白血病
CTL公司*
外体
癌症研究
免疫学
细胞毒性T细胞
微泡
免疫系统
免疫疗法
下调和上调
髓系白血病
生物
小RNA
体外
CD8型
基因
生物化学
作者
Fang Huang,Zhichao Li,Wenhao Zhang,Jiaqi Li,Siguo Hao
标识
DOI:10.1007/s00262-021-03138-5
摘要
Cell-released nanovesicles can induce anti-leukemia immunity. Leukemia cell-derived exosomes (LEXs) are promising anti-tumor vaccine components for cancer immunotherapy. Nonetheless, LEX-based vaccines show modest potency in vivo, likely due to the presence of immunosuppressive PD-L1 proteins in the exosomes. We hypothesized that targeting exosomal PD-L1 could optimize LEX-based vaccines. To test this hypothesis, we compared the capacity of exosomes derived from PD-L1-silenced acute lymphocytic leukemia-derived leukemia cells (LEXPD-L1si) and non-modified exosomes to induce anti-leukemia immunity. Lentivirus-mediated PD-L1 shRNA was used to downregulate PD-L1 expression in parental leukemia cells and LEXs. LEXPD-L1si were characterized by electron microscopy, Western blotting, nanoparticle tracking analysis and flow cytometry, and their anti-leukemia immune effects were tested on immune cells and in animal models. In the present study, lentivirus-mediated PD-L1 shRNA successfully downregulated PD-L1 expression in parental leukemia cells and in LEXs. LEXPD-L1si induced better DC maturation and subsequently enhanced T cell activation, as compared with non-modified LEXs. Consistently, immunization with LEXPD-L1si induced greater T cell proliferation and Th1 cytokine release. LEXPD-L1si was a more potent inducer of antigen-specific cytotoxic lymphocyte (CTL) response. Finally, we vaccinated DBA/2 mice with exosome formulations to test their ability to induce both protective and therapeutic anti-tumor CTL responses in vivo. Vaccination with LEXPD-L1si strongly inhibited tumor growth and prolonged survival of immunized mice. Downregulation of exosomal PD-L1 expression in LEXs effectively induces more potent anti-leukemia immunity. Therefore, our strategy for optimizing LEX-based vaccine has a potential application in leukemia immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI