材料科学
快离子导体
阴极
组态熵
离子
阳极
纳米技术
电压
热力学
电解质
电气工程
物理化学
化学
电极
物理
工程类
有机化学
作者
Zhen‐Yi Gu,Jin‐Zhi Guo,Junming Cao,Xiao‐Tong Wang,Xinxin Zhao,Xueying Zheng,Wenhao Li,Zhonghui Sun,Haojie Liang,Xing‐Long Wu
标识
DOI:10.1002/adma.202110108
摘要
Impossible voltage plateau regulation for the cathode materials with fixed active elemental center is a pressing issue hindering the development of Na-superionic-conductor (NASICON)-type Na3 V2 (PO4 )2 F3 (NVPF) cathodes in sodium-ion batteries (SIBs). Herein, a high-entropy substitution strategy, to alter the detailed crystal structure of NVPF without changing the central active V atom, is pioneeringly utilized, achieving simultaneous electronic conductivity enhancement and diffusion barrier reduction for Na+ , according to theoretical calculations. The as-prepared carbon-free high-entropy Na3 V1.9 (Ca,Mg,Al,Cr,Mn)0.1 (PO4 )2 F3 (HE-NVPF) cathode can deliver higher mean voltage of 3.81 V and more advantageous energy density up to 445.5 Wh kg-1 , which is attributed by the diverse transition-metal elemental substitution in high-entropy crystalline. More importantly, high-entropy introduction can help realize disordered rearrangement of Na+ at Na(2) active sites, thereby to refrain from unfavorable discharging behaviors at low-voltage region, further lifting up the mean working voltage to realize a full Na-ion storage at the high voltage plateau. Coupling with a hard carbon (HC) anode, HE-NVPF//HC SIB full cells can deliver high specific energy density of 326.8 Wh kg-1 at 5 C with the power density of 2178.9 W kg-1 . This route means the unlikely potential regulation in NASICON-type crystal with unchangeable active center becomes possible, inspiring new ideas on elevating the mean working voltage for SIB cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI