Downscaling Hourly Air Temperature of WRF Simulations Over Complex Topography: A Case Study of Chongli District in Hebei Province, China

缩小尺度 天气研究与预报模式 环境科学 中尺度气象学 气象学 地形 气候学 均方误差 空气温度 数值天气预报 降水 地理 地质学 数学 统计 地图学
作者
Zhang Guang-xing,Shanyou Zhu,Nan Zhang,Guixin Zhang,Yongming Xu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:127 (3) 被引量:6
标识
DOI:10.1029/2021jd035542
摘要

Abstract Accurate and high‐resolution air temperature prediction is important in many different applications. Hourly air temperature forecasting in mountainous areas is necessary and important because mountainous areas are becoming increasingly important areas of human activities. At present, scientists successfully employ numerical weather prediction (NWP) models, such as the Weather Research and Forecasting (WRF) model, to achieve reliable forecasts. However, air temperature forecasting and modeling over complex geographical zones are still difficult tasks. The WRF model is a mesoscale model and does not adequately account for the influence of terrain on the air temperature. It is important to downscale larger‐scale models to a much finer scale. In this paper, a statistical temperature downscaling method based on geographically weighted regression (GWR) and diurnal temperature cycle (DTC) models is proposed. A statistical downscaling scheme of WRF simulation data is designed to forecast the hourly air temperature from 1‐km spatial resolution to 30 m, up to 24 hr in advance. The combined downscaling model's root‐mean‐square error (RMSE) decreased by 0.87°C at the automatic weather station (AWS) level and 0.62°C over the domain when compared to WRF simulations, and the mean absolute error (MAE) decreased by 0.71°C and 0.51°C, respectively, at these two levels. The results reveal that the combined downscaling model performs very well in correcting and downscaling the air temperature in WRF simulations in the study areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
隐形曼青应助通~采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
沈迎松应助科研通管家采纳,获得100
2秒前
ED应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
herococa应助科研通管家采纳,获得10
3秒前
3秒前
Derik发布了新的文献求助10
3秒前
3秒前
是龙龙呀发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
天天开心发布了新的文献求助10
3秒前
詩翰完成签到,获得积分10
3秒前
Jack发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
无私语儿发布了新的文献求助30
4秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771