钙钛矿(结构)
材料科学
金属
离子键合
能量转换效率
化学工程
光电子学
图层(电子)
卤化物
无机化学
纳米技术
离子
化学
有机化学
冶金
工程类
作者
Junjie Zhou,Minghao Li,Siyang Wang,Liguo Tan,Yue Liu,Chaofan Jiang,Xing Zhao,Liming Ding,Chenyi Yi
出处
期刊:Nano Energy
[Elsevier]
日期:2022-05-01
卷期号:95: 107036-107036
被引量:58
标识
DOI:10.1016/j.nanoen.2022.107036
摘要
As a deep level trap in perovskite, metallic lead (Pb0) greatly deteriorates the performances of perovskite optoelectronics such as perovskite solar cells. Here, we designed 2-trifluoromethyl-phenylethylamine hydroiodide (2-CF3-PEAI) to serve as a multifunctional trap deactivating reagent which can react with metallic lead to eliminate deep level Pb0 traps, forming a thin layer of 2D perovskite (2-CF3-PEA)2PbI4 atop the 3D perovskite without impediment of charge carrier transport. Moreover, functional groups in 2-CF3-PEAI can deactivate a variety of traps in perovskite by multiple interactions, i.e. coordination between I- and Pb2+, hydrogen bond between CF3 and formamidine, ionic interaction between NH3+ group and lead halide anion etc. Thus, non-radiative recombination was dramatically inhibited. The surface coverage of hydrophobic thin 2D perovskite (2-CF3-PEA)2PbI4 layer impedes the diffusion of metal (from anode) and humidity (from the environment) to 3D perovskite, leading to improved device stabilities. As a result, a 23.17% power conversion efficiency was achieved and an enhanced T80 (~850 h) was obtained under continuous light-soaking without encapsulation, 121 times longer than that of the untreated devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI