The potential of artificial intelligence-based applications in kidney pathology
病理
计算机科学
医学
作者
Roman D Bülow,Jon N Marsh,S Joshua Swamidass,Joseph P Gaut,Peter Boor
出处
期刊:Current Opinion in Nephrology and Hypertension [Ovid Technologies (Wolters Kluwer)] 日期:2022-02-14卷期号:Publish Ahead of Print
标识
DOI:10.1097/mnh.0000000000000784
摘要
The field of pathology is currently undergoing a significant transformation from traditional glass slides to a digital format dependent on whole slide imaging. Transitioning from glass to digital has opened the field to development and application of image analysis technology, commonly deep learning methods (artificial intelligence [AI]) to assist pathologists with tissue examination. Nephropathology is poised to leverage this technology to improve precision, accuracy, and efficiency in clinical practice.Through a multidisciplinary approach, nephropathologists, and computer scientists have made significant recent advances in developing AI technology to identify histological structures within whole slide images (segmentation), quantification of histologic structures, prediction of clinical outcomes, and classifying disease. Virtual staining of tissue and automation of electron microscopy imaging are emerging applications with particular significance for nephropathology.AI applied to image analysis in nephropathology has potential to transform the field by improving diagnostic accuracy and reproducibility, efficiency, and prognostic power. Reimbursement, demonstration of clinical utility, and seamless workflow integration are essential to widespread adoption.