A semi-automatic threshold-based segmentation algorithm for lung cancer delineation

分割 稳健性(进化) 计算机科学 人工智能 Sørensen–骰子系数 掷骰子 无线电技术 图像分割 模式识别(心理学) 特征(语言学) 医学影像学 感兴趣区域 数学 统计 生物化学 语言学 基因 哲学 化学
作者
Jaryd R. Christie,Omar Daher,Hannah van Dongen,Rory Gilliland,Mohamed Abdelrazek,Sarah A. Mattonen
标识
DOI:10.1117/12.2611501
摘要

Radiomic studies utilize AI and quantitative features from medical images to create models that can predict patient outcomes. An integral step in these radiomic studies is the delineation of the regions of interest where the features are extracted. Manual segmentation is labor intensive and time-consuming for large studies. Semi-automatic segmentation tools have been used in recent radiomic studies to achieve more reproducible segmentations and robust radiomics features. However, for the segmentation of lung tumors on CT images, tools in the literature are difficult to find publicly and require extensive user interaction. Therefore, we aimed to build a semi-automatic segmentation tool which was intuitive, fast, and required minimal user interaction. We used one dataset to develop the segmentation algorithm on (n=49), and another to test its performance (n=144). All 144 tumors were segmented on the CT images using the semiautomatic tool by three separate users. A gold standard tumor delineation was determined by a trained radiologist. The segmentation robustness was assessed using the Dice, mean absolute boundary distance (MAD) and volume difference (VD). A total of 408 radiomic features were extracted and feature robustness was determined using an intra-class correlation coefficient (ICC) greater than 0.8. The developed tool achieved an average Dice of 0.90, MAD of 0.62 mm and a VD of 0.97 ml between the three users. A total of 181 (76%) of the extracted features displayed excellent reliability. This tool has the potential to augment the reliability of radiomic studies by making segmentations and feature sets more reproducible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bewithtaq发布了新的文献求助10
1秒前
JamesPei应助罗山柳采纳,获得10
1秒前
何my完成签到 ,获得积分10
1秒前
KID发布了新的文献求助10
1秒前
啊啊啊啊啊啊完成签到,获得积分10
2秒前
hbydyy发布了新的文献求助10
2秒前
科研通AI6应助oi采纳,获得10
2秒前
白石发布了新的文献求助10
2秒前
豆沙卷发布了新的文献求助10
3秒前
高高诗柳发布了新的文献求助10
3秒前
4秒前
4秒前
浮浮世世发布了新的文献求助10
4秒前
浮游应助研友_楼灵煌采纳,获得10
4秒前
义气的菲鹰完成签到,获得积分10
4秒前
cz发布了新的文献求助10
4秒前
4秒前
三冬四夏发布了新的文献求助10
5秒前
5秒前
共享精神应助pipi采纳,获得10
5秒前
无花果应助子铭采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
song完成签到,获得积分10
6秒前
如意的沛柔应助WestHoter采纳,获得10
6秒前
naive完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
任我行完成签到,获得积分10
8秒前
8秒前
孙萌萌发布了新的文献求助10
9秒前
9秒前
errui发布了新的文献求助10
9秒前
9秒前
Orange应助vinni采纳,获得10
10秒前
张龙雨发布了新的文献求助10
10秒前
香豆素完成签到 ,获得积分10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239042
求助须知:如何正确求助?哪些是违规求助? 4406526
关于积分的说明 13714333
捐赠科研通 4274907
什么是DOI,文献DOI怎么找? 2345793
邀请新用户注册赠送积分活动 1342859
关于科研通互助平台的介绍 1300823