A semi-automatic threshold-based segmentation algorithm for lung cancer delineation

分割 稳健性(进化) 计算机科学 人工智能 Sørensen–骰子系数 掷骰子 无线电技术 图像分割 模式识别(心理学) 特征(语言学) 医学影像学 感兴趣区域 数学 统计 生物化学 化学 语言学 哲学 基因
作者
Jaryd R. Christie,Omar Daher,Hannah van Dongen,Rory Gilliland,Mohamed Abdelrazek,Sarah A. Mattonen
标识
DOI:10.1117/12.2611501
摘要

Radiomic studies utilize AI and quantitative features from medical images to create models that can predict patient outcomes. An integral step in these radiomic studies is the delineation of the regions of interest where the features are extracted. Manual segmentation is labor intensive and time-consuming for large studies. Semi-automatic segmentation tools have been used in recent radiomic studies to achieve more reproducible segmentations and robust radiomics features. However, for the segmentation of lung tumors on CT images, tools in the literature are difficult to find publicly and require extensive user interaction. Therefore, we aimed to build a semi-automatic segmentation tool which was intuitive, fast, and required minimal user interaction. We used one dataset to develop the segmentation algorithm on (n=49), and another to test its performance (n=144). All 144 tumors were segmented on the CT images using the semiautomatic tool by three separate users. A gold standard tumor delineation was determined by a trained radiologist. The segmentation robustness was assessed using the Dice, mean absolute boundary distance (MAD) and volume difference (VD). A total of 408 radiomic features were extracted and feature robustness was determined using an intra-class correlation coefficient (ICC) greater than 0.8. The developed tool achieved an average Dice of 0.90, MAD of 0.62 mm and a VD of 0.97 ml between the three users. A total of 181 (76%) of the extracted features displayed excellent reliability. This tool has the potential to augment the reliability of radiomic studies by making segmentations and feature sets more reproducible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
早日毕业完成签到 ,获得积分10
1秒前
1秒前
1秒前
jjj完成签到,获得积分20
2秒前
清萝完成签到 ,获得积分10
3秒前
十七完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
啦啦鱼发布了新的文献求助10
5秒前
5秒前
mqq发布了新的文献求助10
6秒前
yi发布了新的文献求助10
7秒前
pmk完成签到,获得积分10
7秒前
WENc完成签到,获得积分10
8秒前
田様应助楚天娇采纳,获得10
9秒前
思源应助哭泣的俊驰采纳,获得10
10秒前
Queena发布了新的文献求助10
10秒前
十七发布了新的文献求助10
10秒前
樊珩发布了新的文献求助10
10秒前
重要芯完成签到 ,获得积分10
11秒前
12秒前
研友_VZG7GZ应助yi采纳,获得10
12秒前
013完成签到,获得积分10
12秒前
共享精神应助暴富小羊采纳,获得10
12秒前
13秒前
包容聋五发布了新的文献求助10
17秒前
共享精神应助mqq采纳,获得10
18秒前
XJ完成签到,获得积分10
18秒前
淡定井发布了新的文献求助10
19秒前
jxr发布了新的文献求助10
21秒前
浓浓完成签到 ,获得积分10
23秒前
24秒前
薛定谔的猫完成签到 ,获得积分10
24秒前
蘇q完成签到 ,获得积分10
26秒前
26秒前
负责斑马完成签到 ,获得积分10
27秒前
西西里柠檬完成签到,获得积分10
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030