A semi-automatic threshold-based segmentation algorithm for lung cancer delineation

分割 稳健性(进化) 计算机科学 人工智能 Sørensen–骰子系数 掷骰子 无线电技术 图像分割 模式识别(心理学) 特征(语言学) 医学影像学 感兴趣区域 数学 统计 生物化学 语言学 基因 哲学 化学
作者
Jaryd R. Christie,Omar Daher,Hannah van Dongen,Rory Gilliland,Mohamed Abdelrazek,Sarah A. Mattonen
标识
DOI:10.1117/12.2611501
摘要

Radiomic studies utilize AI and quantitative features from medical images to create models that can predict patient outcomes. An integral step in these radiomic studies is the delineation of the regions of interest where the features are extracted. Manual segmentation is labor intensive and time-consuming for large studies. Semi-automatic segmentation tools have been used in recent radiomic studies to achieve more reproducible segmentations and robust radiomics features. However, for the segmentation of lung tumors on CT images, tools in the literature are difficult to find publicly and require extensive user interaction. Therefore, we aimed to build a semi-automatic segmentation tool which was intuitive, fast, and required minimal user interaction. We used one dataset to develop the segmentation algorithm on (n=49), and another to test its performance (n=144). All 144 tumors were segmented on the CT images using the semiautomatic tool by three separate users. A gold standard tumor delineation was determined by a trained radiologist. The segmentation robustness was assessed using the Dice, mean absolute boundary distance (MAD) and volume difference (VD). A total of 408 radiomic features were extracted and feature robustness was determined using an intra-class correlation coefficient (ICC) greater than 0.8. The developed tool achieved an average Dice of 0.90, MAD of 0.62 mm and a VD of 0.97 ml between the three users. A total of 181 (76%) of the extracted features displayed excellent reliability. This tool has the potential to augment the reliability of radiomic studies by making segmentations and feature sets more reproducible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
草莓嘎噶发布了新的文献求助10
刚刚
彭于晏应助shinn采纳,获得10
刚刚
受伤的擎宇完成签到,获得积分10
刚刚
qwe31533完成签到,获得积分10
刚刚
1秒前
1秒前
wanci应助缓慢含烟采纳,获得10
2秒前
2秒前
2秒前
Clarie发布了新的文献求助10
2秒前
爱笑夜蕾发布了新的文献求助10
2秒前
Liangc333完成签到 ,获得积分10
2秒前
3秒前
墨琼琼应助曾泰平采纳,获得10
3秒前
科研通AI6.1应助小波采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
小米发布了新的文献求助10
4秒前
科研通AI2S应助Maisie采纳,获得10
6秒前
6秒前
清爽的铭发布了新的文献求助20
6秒前
7秒前
7秒前
科研菜菜完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
幸福的寄云完成签到,获得积分10
9秒前
细菌小裁缝5114关注了科研通微信公众号
9秒前
婷婷的大宝剑完成签到 ,获得积分10
9秒前
yatuitui发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
可爱的函函应助文献达人采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760209
求助须知:如何正确求助?哪些是违规求助? 5523899
关于积分的说明 15396860
捐赠科研通 4897047
什么是DOI,文献DOI怎么找? 2634010
邀请新用户注册赠送积分活动 1582088
关于科研通互助平台的介绍 1537582