亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A semi-automatic threshold-based segmentation algorithm for lung cancer delineation

分割 稳健性(进化) 计算机科学 人工智能 Sørensen–骰子系数 掷骰子 无线电技术 图像分割 模式识别(心理学) 特征(语言学) 医学影像学 感兴趣区域 数学 统计 生物化学 语言学 基因 哲学 化学
作者
Jaryd R. Christie,Omar Daher,Hannah van Dongen,Rory Gilliland,Mohamed Abdelrazek,Sarah A. Mattonen
标识
DOI:10.1117/12.2611501
摘要

Radiomic studies utilize AI and quantitative features from medical images to create models that can predict patient outcomes. An integral step in these radiomic studies is the delineation of the regions of interest where the features are extracted. Manual segmentation is labor intensive and time-consuming for large studies. Semi-automatic segmentation tools have been used in recent radiomic studies to achieve more reproducible segmentations and robust radiomics features. However, for the segmentation of lung tumors on CT images, tools in the literature are difficult to find publicly and require extensive user interaction. Therefore, we aimed to build a semi-automatic segmentation tool which was intuitive, fast, and required minimal user interaction. We used one dataset to develop the segmentation algorithm on (n=49), and another to test its performance (n=144). All 144 tumors were segmented on the CT images using the semiautomatic tool by three separate users. A gold standard tumor delineation was determined by a trained radiologist. The segmentation robustness was assessed using the Dice, mean absolute boundary distance (MAD) and volume difference (VD). A total of 408 radiomic features were extracted and feature robustness was determined using an intra-class correlation coefficient (ICC) greater than 0.8. The developed tool achieved an average Dice of 0.90, MAD of 0.62 mm and a VD of 0.97 ml between the three users. A total of 181 (76%) of the extracted features displayed excellent reliability. This tool has the potential to augment the reliability of radiomic studies by making segmentations and feature sets more reproducible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助苹果小玉采纳,获得10
4秒前
wanci应助被杖杀的茯苓采纳,获得10
9秒前
14秒前
Thi发布了新的文献求助10
19秒前
40秒前
47秒前
52秒前
拾英发布了新的文献求助10
54秒前
57秒前
标致金毛发布了新的文献求助10
59秒前
1分钟前
科研启动完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Zhy发布了新的文献求助10
1分钟前
被杖杀的茯苓完成签到,获得积分10
1分钟前
程新亮完成签到 ,获得积分10
1分钟前
含蓄的白安完成签到,获得积分10
1分钟前
2分钟前
SciGPT应助Hayat采纳,获得20
2分钟前
材料生发布了新的文献求助10
2分钟前
2分钟前
奋斗静蕾发布了新的文献求助10
2分钟前
wanci应助奋斗静蕾采纳,获得10
2分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
blueskyzhi完成签到,获得积分10
3分钟前
3分钟前
陈杰发布了新的文献求助10
3分钟前
77777完成签到,获得积分10
3分钟前
4分钟前
小花小宝和阿飞完成签到 ,获得积分10
4分钟前
chelsea完成签到,获得积分10
4分钟前
Lucas应助Yuanyuan采纳,获得10
5分钟前
5分钟前
奋斗静蕾发布了新的文献求助10
5分钟前
脑洞疼应助奋斗静蕾采纳,获得10
6分钟前
wanci应助Hayat采纳,获得20
6分钟前
SUHAS完成签到,获得积分20
6分钟前
阿里发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568207
求助须知:如何正确求助?哪些是违规求助? 4652651
关于积分的说明 14701915
捐赠科研通 4594523
什么是DOI,文献DOI怎么找? 2521025
邀请新用户注册赠送积分活动 1492879
关于科研通互助平台的介绍 1463696