A semi-automatic threshold-based segmentation algorithm for lung cancer delineation

分割 稳健性(进化) 计算机科学 人工智能 Sørensen–骰子系数 掷骰子 无线电技术 图像分割 模式识别(心理学) 特征(语言学) 医学影像学 感兴趣区域 数学 统计 生物化学 语言学 基因 哲学 化学
作者
Jaryd R. Christie,Omar Daher,Hannah van Dongen,Rory Gilliland,Mohamed Abdelrazek,Sarah A. Mattonen
标识
DOI:10.1117/12.2611501
摘要

Radiomic studies utilize AI and quantitative features from medical images to create models that can predict patient outcomes. An integral step in these radiomic studies is the delineation of the regions of interest where the features are extracted. Manual segmentation is labor intensive and time-consuming for large studies. Semi-automatic segmentation tools have been used in recent radiomic studies to achieve more reproducible segmentations and robust radiomics features. However, for the segmentation of lung tumors on CT images, tools in the literature are difficult to find publicly and require extensive user interaction. Therefore, we aimed to build a semi-automatic segmentation tool which was intuitive, fast, and required minimal user interaction. We used one dataset to develop the segmentation algorithm on (n=49), and another to test its performance (n=144). All 144 tumors were segmented on the CT images using the semiautomatic tool by three separate users. A gold standard tumor delineation was determined by a trained radiologist. The segmentation robustness was assessed using the Dice, mean absolute boundary distance (MAD) and volume difference (VD). A total of 408 radiomic features were extracted and feature robustness was determined using an intra-class correlation coefficient (ICC) greater than 0.8. The developed tool achieved an average Dice of 0.90, MAD of 0.62 mm and a VD of 0.97 ml between the three users. A total of 181 (76%) of the extracted features displayed excellent reliability. This tool has the potential to augment the reliability of radiomic studies by making segmentations and feature sets more reproducible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
byby完成签到,获得积分10
2秒前
3秒前
BLAZe完成签到 ,获得积分10
3秒前
sqf1209完成签到,获得积分10
4秒前
ywindm完成签到,获得积分10
4秒前
yywang完成签到 ,获得积分10
5秒前
zeannezg完成签到 ,获得积分10
6秒前
7秒前
枫糖叶落完成签到,获得积分10
9秒前
Lucky.完成签到 ,获得积分0
10秒前
lululu完成签到 ,获得积分10
12秒前
知性的夏槐完成签到 ,获得积分10
12秒前
哈哈李完成签到,获得积分10
13秒前
小奇曲饼完成签到 ,获得积分10
13秒前
13秒前
misa完成签到 ,获得积分10
14秒前
ning_qing完成签到 ,获得积分10
15秒前
甜甜醉波完成签到,获得积分10
15秒前
善良的冷梅完成签到,获得积分10
15秒前
yywang关注了科研通微信公众号
15秒前
15秒前
Dlan完成签到,获得积分10
16秒前
呆萌井完成签到,获得积分10
16秒前
17秒前
鉴湖完成签到,获得积分10
17秒前
001完成签到,获得积分10
17秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
17秒前
efengmo完成签到,获得积分10
18秒前
天真南松完成签到,获得积分10
19秒前
讨厌下雨天完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
lii完成签到,获得积分10
23秒前
哦哦完成签到,获得积分10
24秒前
ninomae完成签到 ,获得积分10
27秒前
渴望者完成签到,获得积分10
27秒前
lzl007完成签到 ,获得积分10
28秒前
只争朝夕完成签到,获得积分10
30秒前
yin完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590