A semi-automatic threshold-based segmentation algorithm for lung cancer delineation

分割 稳健性(进化) 计算机科学 人工智能 Sørensen–骰子系数 掷骰子 无线电技术 图像分割 模式识别(心理学) 特征(语言学) 医学影像学 感兴趣区域 数学 统计 生物化学 化学 语言学 哲学 基因
作者
Jaryd R. Christie,Omar Daher,Hannah van Dongen,Rory Gilliland,Mohamed Abdelrazek,Sarah A. Mattonen
标识
DOI:10.1117/12.2611501
摘要

Radiomic studies utilize AI and quantitative features from medical images to create models that can predict patient outcomes. An integral step in these radiomic studies is the delineation of the regions of interest where the features are extracted. Manual segmentation is labor intensive and time-consuming for large studies. Semi-automatic segmentation tools have been used in recent radiomic studies to achieve more reproducible segmentations and robust radiomics features. However, for the segmentation of lung tumors on CT images, tools in the literature are difficult to find publicly and require extensive user interaction. Therefore, we aimed to build a semi-automatic segmentation tool which was intuitive, fast, and required minimal user interaction. We used one dataset to develop the segmentation algorithm on (n=49), and another to test its performance (n=144). All 144 tumors were segmented on the CT images using the semiautomatic tool by three separate users. A gold standard tumor delineation was determined by a trained radiologist. The segmentation robustness was assessed using the Dice, mean absolute boundary distance (MAD) and volume difference (VD). A total of 408 radiomic features were extracted and feature robustness was determined using an intra-class correlation coefficient (ICC) greater than 0.8. The developed tool achieved an average Dice of 0.90, MAD of 0.62 mm and a VD of 0.97 ml between the three users. A total of 181 (76%) of the extracted features displayed excellent reliability. This tool has the potential to augment the reliability of radiomic studies by making segmentations and feature sets more reproducible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到 ,获得积分10
刚刚
1秒前
大模型应助直率的勒采纳,获得10
1秒前
1秒前
想毕业完成签到 ,获得积分10
1秒前
2秒前
彦希发布了新的文献求助10
2秒前
科研通AI2S应助lixm采纳,获得10
2秒前
3秒前
充电宝应助旦丁洋采纳,获得10
4秒前
Phi.Wang发布了新的文献求助10
5秒前
平常的无极完成签到,获得积分10
5秒前
代骜珺发布了新的文献求助10
6秒前
笨笨松发布了新的文献求助10
7秒前
8秒前
hbuhfl完成签到 ,获得积分10
9秒前
komorebi完成签到,获得积分10
9秒前
酷波er应助温婉的篮球采纳,获得10
9秒前
ggg关闭了ggg文献求助
10秒前
Rqbnicsp发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
l玖应助wyg117采纳,获得10
12秒前
江浪浪应助euphoria采纳,获得20
13秒前
优美的以山完成签到,获得积分10
13秒前
海珠完成签到 ,获得积分10
13秒前
13秒前
jingjing完成签到 ,获得积分20
14秒前
14秒前
15秒前
搜集达人应助研友_V8Qmr8采纳,获得10
15秒前
在水一方应助慢慢采纳,获得10
15秒前
科研通AI2S应助愉快的宛儿采纳,获得10
16秒前
16秒前
16秒前
16秒前
一龙完成签到,获得积分10
17秒前
我是老大应助茉莉采纳,获得10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866