Applying machine learning and google street view to explore effects of drivers’ visual environment on traffic safety

计算机科学 运输工程 计算机安全 工程类
作者
Qing Cai,Mohamed Abdel‐Aty,Ou Zheng,Yina Wu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:135: 103541-103541 被引量:32
标识
DOI:10.1016/j.trc.2021.103541
摘要

• A novel method to measure drivers’ visual environment using Google Street View panoramas. • Deep learning algorithms was used for semantic segmentation and depth estimation of images. • Transformation of the coordinate system was conducted to build environment in the real world. • Explainable machine learning methods was used to predict speeding crashes and identify effects. This study aims to explore the effects of drivers’ visual environment on speeding crashes by using different machine learning techniques. To obtain the data of drivers’ visual environment in the real world, a framework was proposed to obtain the Google street view (GSV) images. Deep neural network and computer vision technologies were applied to obtain the clustering and depth information from the GSV images. To reflect drivers’ visual environment in the real world, the coordinate transformation was conducted, and several visual measures were proposed and calculated. Three different tree-based ensemble models (i.e., random forest, adaptive boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost)) were applied to estimate the number of speeding crashes and the comparison results showed that XGBoost could provide the best data fit. The explainable machine learning method were applied to explore the effects of drivers’ visual environment and other features on speeding crashes. The results validated the visual environment data obtained by the proposed method for the speeding crash analysis. It was suggested that the proportion of trees in the drivers’ view and the proportion of road length with trees could reduce speeding crashes. In addition, the complexity level of drivers’ visual environment was found to increase the crash occurrence. This study provided new insights to obtain the detailed information from GSV images for traffic safety analysis. The findings based on the explainable machine learning could also provide road planners and engineers clear suggestions to select appropriate countermeasures to enhance traffic safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
震动的涵瑶完成签到,获得积分20
刚刚
WYF发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
weirb发布了新的文献求助30
4秒前
科研通AI5应助学术草履虫采纳,获得10
4秒前
4秒前
Panda发布了新的文献求助10
4秒前
华子黄发布了新的文献求助10
5秒前
5秒前
5秒前
蝈蝈完成签到,获得积分20
5秒前
6秒前
yaya发布了新的文献求助10
7秒前
科研通AI2S应助神奇的种子采纳,获得10
8秒前
慕青应助顺心的水之采纳,获得10
8秒前
10秒前
2_3_10发布了新的文献求助10
10秒前
微笑耳机发布了新的文献求助10
10秒前
无花果应助qiqi1111采纳,获得10
10秒前
刻苦沛芹发布了新的文献求助10
11秒前
老六完成签到 ,获得积分10
13秒前
Stella发布了新的文献求助10
13秒前
万能图书馆应助11111采纳,获得10
17秒前
高高完成签到 ,获得积分10
17秒前
18秒前
九天发布了新的文献求助10
18秒前
爆米花应助正直的龙五采纳,获得10
19秒前
脑洞疼应助温婉的香菇采纳,获得10
20秒前
20秒前
Panda完成签到 ,获得积分10
22秒前
第五元素完成签到,获得积分10
22秒前
qiqi1111发布了新的文献求助10
23秒前
23秒前
小仙女212完成签到,获得积分10
23秒前
tianzhanggong发布了新的文献求助30
23秒前
24秒前
Tree完成签到 ,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442