Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo

材料科学 人工耳蜗植入 耳蜗 生物医学工程 电极 多电极阵列 植入 微电极 化学 听力学 医学 外科 物理化学
作者
Andreas Weltin,Jochen Kieninger,Gerald Urban,Sarah Buchholz,Susan Arndt,Nicole Roßkothen-Kuhl
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:199: 113859-113859 被引量:12
标识
DOI:10.1016/j.bios.2021.113859
摘要

Cochlear implants are the most successful neural prostheses worldwide and routinely restore sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Enhancing this standard implant by chemical sensor functionality opens up new possibilities, ranging from access to the biochemical microenvironment of the implanted electrode array to the long-term study of the electrode status. We developed an electrochemical method to turn the platinum stimulation microelectrodes of cochlear implants into electrochemical sensors. The electrodes showed excellent and stable chemical sensor properties, as demonstrated by in vitro characterizations with combined amperometric and active potentiometric dissolved oxygen and hydrogen peroxide measurements. Linear, stable and highly reproducible sensor responses within the relevant concentration ranges with negligible offset were shown. This approach was successfully applied in vivo in an animal model. Intracochlear oxygen dynamics in rats upon breathing pure oxygen were reproducibly and precisely measured in real-time from the perilymph. At the same time, correct implant placement and its functionality was verified by measurements of electrically evoked auditory brainstem responses with clearly distinguishable peaks. Acute measurements indicated no adverse influence of electrical stimulation on electrochemical measurements and vice versa. Our work is ground-breaking towards advanced implant functionality, future implant lifetime monitoring, and implant-life-long in situ investigation of electrode degradation in cochlear implant patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三火完成签到,获得积分10
刚刚
华仔应助年少的人采纳,获得10
刚刚
苏卿应助xxx采纳,获得10
1秒前
深情安青应助闲听花落采纳,获得10
3秒前
3秒前
星辰大海应助王哈哈采纳,获得10
3秒前
缥缈的凡白完成签到,获得积分10
3秒前
Kaysarr完成签到,获得积分10
4秒前
斯文败类应助Jeffy采纳,获得10
4秒前
科研通AI2S应助Zz采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Phosphene应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
liuy完成签到,获得积分20
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
sugarxy应助科研通管家采纳,获得150
9秒前
慕青应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
小何HUHU完成签到,获得积分10
11秒前
12秒前
118Nov发布了新的文献求助10
12秒前
年少的人发布了新的文献求助10
12秒前
万能图书馆应助科研小狗采纳,获得10
13秒前
14秒前
14秒前
dxtmm发布了新的文献求助10
14秒前
陆绮梅发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368