Learning electric vehicle driver range anxiety with an initial state of charge-oriented gradient boosting approach

电动汽车 大都市区 背景(考古学) Boosting(机器学习) 荷电状态 航程(航空) 均方误差 梯度升压 计算机科学 随机森林 运输工程 练习场 电池(电) 模拟 汽车工程 工程类 统计 人工智能 地理 数学 考古 功率(物理) 航空航天工程 物理 量子力学
作者
Yang Song,Xianbiao Hu
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:27 (2): 238-256 被引量:12
标识
DOI:10.1080/15472450.2021.2010053
摘要

This manuscript focuses on the modeling of electric vehicle (EV) driver's range anxiety, a fear that a vehicle does not have sufficient range, or state of charge (SOC) of the battery pack, to reach its destination and would strand its occupants. Despite numerous research studies on the modeling of charging behaviors, modeling efforts to understand at what battery percentages do EV drivers charge their vehicles, and what are the associated contributing factors, are rather limited. To this end, an ensemble learning model based on gradient boosting is developed. The model sequentially fits new predictors to new residuals of the previous prediction and, then, minimizes the loss when adding the latest prediction. A total of 18 features are defined and extracted from the multisource data, which cover information on driver, vehicles, stations, traffic conditions, as well as spatial-temporal context information of the charging events. The analyzed dataset includes 4.5-year's charging event log data from 3,096 users and 468 public charging stations in Kansas City Missouri, and the macroscopic travel demand model maintained by the metropolitan planning organization. The result shows the proposed model achieved a satisfactory result with a R square value of 0.54 and root mean square error of 0.14, both better than multiple linear regression model and random forest model. To reduce range anxiety, it is suggested that the priorities of deploying new charging facilities should be given to the areas with higher daily traffic prediction, with more conservative EV users or that are further from residential areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两酒窝完成签到,获得积分10
1秒前
七十三度完成签到,获得积分10
1秒前
1秒前
嘟嘟金子发布了新的文献求助10
2秒前
称心砖头发布了新的文献求助10
2秒前
2秒前
哈哈完成签到,获得积分10
3秒前
今后应助小宇采纳,获得10
3秒前
领导范儿应助Khr1stINK采纳,获得10
3秒前
汉堡包应助羊羊采纳,获得10
3秒前
KX发布了新的文献求助10
4秒前
落晨发布了新的文献求助10
4秒前
4秒前
geigeigei完成签到,获得积分10
4秒前
8564523发布了新的文献求助10
4秒前
5秒前
靓丽涵易完成签到,获得积分10
5秒前
5秒前
WHL完成签到,获得积分10
6秒前
JiaqiLiu完成签到,获得积分10
6秒前
6秒前
orixero应助charon采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
可爱的函函应助娜行采纳,获得10
7秒前
鱼圆杂铺完成签到 ,获得积分10
7秒前
Danielle完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
呆呆发布了新的文献求助10
8秒前
只只完成签到,获得积分20
8秒前
WNL发布了新的文献求助10
9秒前
彭珊完成签到,获得积分10
9秒前
Rocky发布了新的文献求助10
9秒前
Charon922完成签到,获得积分10
9秒前
9秒前
酒尚温发布了新的文献求助50
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678