已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning electric vehicle driver range anxiety with an initial state of charge-oriented gradient boosting approach

电动汽车 大都市区 背景(考古学) Boosting(机器学习) 荷电状态 航程(航空) 均方误差 梯度升压 计算机科学 随机森林 运输工程 练习场 电池(电) 模拟 汽车工程 工程类 统计 人工智能 地理 数学 功率(物理) 物理 考古 量子力学 航空航天工程
作者
Yang Song,Xianbiao Hu
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:27 (2): 238-256 被引量:12
标识
DOI:10.1080/15472450.2021.2010053
摘要

This manuscript focuses on the modeling of electric vehicle (EV) driver's range anxiety, a fear that a vehicle does not have sufficient range, or state of charge (SOC) of the battery pack, to reach its destination and would strand its occupants. Despite numerous research studies on the modeling of charging behaviors, modeling efforts to understand at what battery percentages do EV drivers charge their vehicles, and what are the associated contributing factors, are rather limited. To this end, an ensemble learning model based on gradient boosting is developed. The model sequentially fits new predictors to new residuals of the previous prediction and, then, minimizes the loss when adding the latest prediction. A total of 18 features are defined and extracted from the multisource data, which cover information on driver, vehicles, stations, traffic conditions, as well as spatial-temporal context information of the charging events. The analyzed dataset includes 4.5-year's charging event log data from 3,096 users and 468 public charging stations in Kansas City Missouri, and the macroscopic travel demand model maintained by the metropolitan planning organization. The result shows the proposed model achieved a satisfactory result with a R square value of 0.54 and root mean square error of 0.14, both better than multiple linear regression model and random forest model. To reduce range anxiety, it is suggested that the priorities of deploying new charging facilities should be given to the areas with higher daily traffic prediction, with more conservative EV users or that are further from residential areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俊逸海豚发布了新的文献求助10
1秒前
3秒前
wan完成签到,获得积分10
3秒前
Zyl完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Jqq关闭了Jqq文献求助
6秒前
LLxiaolong完成签到,获得积分10
6秒前
7秒前
清欢发布了新的文献求助10
7秒前
hh发布了新的文献求助10
8秒前
12秒前
12秒前
13秒前
14秒前
bkagyin应助完美的流沙采纳,获得10
14秒前
情怀应助逺山長采纳,获得10
14秒前
15秒前
小春卷发布了新的文献求助10
18秒前
tdtk发布了新的文献求助10
19秒前
19秒前
19秒前
安详砖家发布了新的文献求助10
19秒前
医学小萌新完成签到,获得积分10
19秒前
斯文败类应助学海行舟采纳,获得10
20秒前
Estella完成签到 ,获得积分10
20秒前
文献通完成签到 ,获得积分10
21秒前
白色梨花发布了新的文献求助10
22秒前
yuke发布了新的文献求助10
22秒前
小枫沂岁完成签到,获得积分10
24秒前
小春卷完成签到,获得积分10
24秒前
yoke完成签到,获得积分10
26秒前
35秒前
41秒前
43秒前
43秒前
rong完成签到 ,获得积分10
46秒前
江小北发布了新的文献求助10
46秒前
hh发布了新的文献求助10
48秒前
Leo完成签到,获得积分10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953276
求助须知:如何正确求助?哪些是违规求助? 3498602
关于积分的说明 11092546
捐赠科研通 3229175
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869318
科研通“疑难数据库(出版商)”最低求助积分说明 801415