Learning electric vehicle driver range anxiety with an initial state of charge-oriented gradient boosting approach

电动汽车 大都市区 背景(考古学) Boosting(机器学习) 荷电状态 航程(航空) 均方误差 梯度升压 计算机科学 随机森林 运输工程 练习场 电池(电) 模拟 汽车工程 工程类 统计 人工智能 地理 数学 考古 功率(物理) 航空航天工程 物理 量子力学
作者
Yang Song,Xianbiao Hu
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:27 (2): 238-256 被引量:12
标识
DOI:10.1080/15472450.2021.2010053
摘要

This manuscript focuses on the modeling of electric vehicle (EV) driver's range anxiety, a fear that a vehicle does not have sufficient range, or state of charge (SOC) of the battery pack, to reach its destination and would strand its occupants. Despite numerous research studies on the modeling of charging behaviors, modeling efforts to understand at what battery percentages do EV drivers charge their vehicles, and what are the associated contributing factors, are rather limited. To this end, an ensemble learning model based on gradient boosting is developed. The model sequentially fits new predictors to new residuals of the previous prediction and, then, minimizes the loss when adding the latest prediction. A total of 18 features are defined and extracted from the multisource data, which cover information on driver, vehicles, stations, traffic conditions, as well as spatial-temporal context information of the charging events. The analyzed dataset includes 4.5-year's charging event log data from 3,096 users and 468 public charging stations in Kansas City Missouri, and the macroscopic travel demand model maintained by the metropolitan planning organization. The result shows the proposed model achieved a satisfactory result with a R square value of 0.54 and root mean square error of 0.14, both better than multiple linear regression model and random forest model. To reduce range anxiety, it is suggested that the priorities of deploying new charging facilities should be given to the areas with higher daily traffic prediction, with more conservative EV users or that are further from residential areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lin完成签到,获得积分10
1秒前
YXL完成签到,获得积分20
2秒前
2秒前
忧虑的代容完成签到,获得积分10
4秒前
wang完成签到,获得积分10
4秒前
小杨完成签到,获得积分10
4秒前
5秒前
你好完成签到,获得积分10
5秒前
我是老大应助黑粉头头采纳,获得10
5秒前
yemiao发布了新的文献求助10
5秒前
天天快乐应助damai采纳,获得10
6秒前
小楫轻舟完成签到,获得积分20
6秒前
Jambo发布了新的文献求助10
6秒前
334niubi666完成签到 ,获得积分10
8秒前
乐乐乐乐完成签到,获得积分10
8秒前
所所应助YXL采纳,获得10
8秒前
小秦秦完成签到 ,获得积分10
8秒前
王羊补牢完成签到 ,获得积分10
9秒前
10秒前
10秒前
四月是你的谎言完成签到 ,获得积分10
11秒前
小猪少年呆呆完成签到 ,获得积分10
12秒前
脑洞疼应助狄1234567采纳,获得10
13秒前
zhaoxi完成签到 ,获得积分10
13秒前
青柠完成签到,获得积分10
14秒前
Jambo完成签到,获得积分10
15秒前
悠悠完成签到 ,获得积分10
15秒前
CodeCraft应助迷路的初柔采纳,获得10
15秒前
903869831@qq.com完成签到,获得积分20
16秒前
18秒前
Tt完成签到,获得积分10
19秒前
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
彭于彦祖应助科研通管家采纳,获得30
19秒前
cocolu应助科研通管家采纳,获得10
19秒前
CodeCraft应助kerry采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
cocolu应助科研通管家采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308414
求助须知:如何正确求助?哪些是违规求助? 2941779
关于积分的说明 8505616
捐赠科研通 2616610
什么是DOI,文献DOI怎么找? 1429744
科研通“疑难数据库(出版商)”最低求助积分说明 663869
邀请新用户注册赠送积分活动 648898