Is college students’ trajectory associated with academic performance?

出勤 弹道 数学教育 计算机科学 学年 仿形(计算机编程) 聚类分析 班级(哲学) 高等教育 心理学 人工智能 政治学 天文 操作系统 物理 法学
作者
Hyoungjoon Lim,Soohyun Kim,Kyong‐Mee Chung,Kangjae Lee,Taewhan Kim,Joon Heo
出处
期刊:Computers & education [Elsevier BV]
卷期号:178: 104397-104397 被引量:21
标识
DOI:10.1016/j.compedu.2021.104397
摘要

Many higher-education institutions have endeavored to understand students' characteristics in order to improve the quality of education. To this end, demographic information and questionnaire surveys have been used, and more recently, digital information from learning management systems and other sources has emerged for students' profiling. This study adopted a novel approach using semantic trajectory data created from smart card logs of campus buildings and class attendance records to investigate the relationship between students' trajectory patterns and academic performance. More than 4000 freshmen were observed per semester at the Songdo International Campus, Yonsei University, in South Korea during four semesters in 2016 and 2017. Dynamic time warping was newly adopted to calculate the similarities among student trajectories, and the similarities of students' trajectories were grouped by hierarchical clustering. Average grade point averages (GPAs) of the groups were evaluated and compared by major and gender. The results showed that the average GPAs were statistically different from each other in general, which confirmed the hypothesis that a student's trajectory differentiates a student's GPA. Furthermore, GPA was positively associated with students' degree of activeness in movement — the more accesses to campus facilities, the better the GPA. Besides, the differences in the average GPAs of the male groups were clearer than was the case for females, and the trajectory of the second semester better characterized an individual student. The study shows that a semantic trajectory pattern generated from location logs is a new and influential factor that can be utilized to understand students' characteristics in higher education and to predict their academic performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
J11发布了新的文献求助10
1秒前
设计狂魔完成签到,获得积分10
2秒前
无花果应助WSDSG采纳,获得10
5秒前
酷波er应助沉静的八宝粥采纳,获得10
5秒前
6秒前
8秒前
00000完成签到,获得积分10
9秒前
自然妙竹完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
斯文败类应助sudaxia100采纳,获得10
15秒前
AhhHuang完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
Ava应助悦耳傲儿采纳,获得10
16秒前
ChenXY完成签到,获得积分10
19秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助10
20秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助30
20秒前
严笑容发布了新的文献求助30
20秒前
孙波完成签到,获得积分10
21秒前
二猫发布了新的文献求助10
21秒前
22秒前
好运连连完成签到 ,获得积分10
24秒前
24秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792