光催化
材料科学
腐蚀
涂层
复合材料
环氧树脂
复合数
介电谱
X射线光电子能谱
渗透
化学工程
电化学
化学
有机化学
催化作用
生物化学
电极
物理化学
膜
工程类
作者
Yongning Ma,Rong Chen,Guiqiang Fei,Mingyuan Guo,Yanyu Li,Yihao Duan,Xiaojing Wu,Haihua Wang
摘要
Abstract To overcome the drawbacks of waterborne epoxy (WEP) films, various fillers were employed to eliminate the microcracks and microporous in the coating layers. Here, photocatalysis (g‐C 3 N 4 ) was incorporated into WEP coating to achieve improved long‐term anti‐aging and anti‐corrosion performance via dual effects, including barrier effects through the formation of dense and uniform composite film as well as the photocatalytic effects. The chemical structure, chemical states, photoabsorption properties, and morphology of g‐C 3 N 4 /WEP films were analyzed. Effects of g‐C 3 N 4 content on the mechanical properties, water resistance, anti‐corrosion behaviors, anti‐permeation property, and photocatalytic activity of g‐C 3 N 4 /WEP (x‐CN/WEP) composites were investigated by salt spray test, electrochemical impedance spectroscopy, and RhB degradation experiments. 2‐CN/WEP coating with the addition of 2% g‐C 3 N 4 displayed the optimum mechanical property, water resistance, anti‐permeation, anti‐corrosion, and anti‐aging performance. The anti‐corrosion mechanisms of x‐CN/WEP composite coating were also summarized, which consists in the formation of chemical bonds between g‐C 3 N 4 and WEP, uniform distribution of g‐C 3 N 4 in WEP, and the photocatalytic performance of g‐C 3 N 4 .
科研通智能强力驱动
Strongly Powered by AbleSci AI