已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images

遥感 环境科学 农业 比例(比率) 温室 索引(排版) 植被指数 计算机科学 叶面积指数 地理 归一化差异植被指数 地图学 农学 考古 万维网 生物
作者
Peng Zhang,Peijun Du,Shanchuan Guo,Wei Zhang,Pengfei Tang,Jike Chen,Hongrui Zheng
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:276: 113042-113042 被引量:51
标识
DOI:10.1016/j.rse.2022.113042
摘要

As an efficient mode of modern agriculture, plastic greenhouse (PG) has significantly increased crop yields, but it is also criticized for changing the agriculture landscape and posing a threat to the environment. Accurate and timely information on PG distribution is essential for the strategic planning of modern agriculture as well as the projection of the environmental impacts. However, PG mapping over a large area has been a long-term challenge. Compared with classifier-based methods, index-based methods have the advantages of fast speed and convenience, which are very suitable for rapid large-scale mapping. The existing PG indices face the diversity of PG types and background environments, and the seasonal variation of PG spectra. To solve these problems, this study proposes a novel spectral index using Sentinel-2 images, namely the Advanced Plastic Greenhouse Index (APGI), to map PGs at a large scale. Four typical PG planting regions in the world, including Almería (Spain), Anamur (Turkey), Weifang (China), and Nantong (China), were selected as study areas. Based on the spectral analysis, some common spectral characteristics of PGs (i.e., high reflectance in NIR wavelengths and strong absorption in red and SWIR2 wavelengths) were observed and used in the APGI for highlighting PG areas. Besides, the coastal aerosol band and the red band were selected as optimal indicators to distinguish PG from other land covers which share similar spectral characteristics with PG. The experimental results indicate that the APGI has obvious advantages in enhancing PG information and suppressing non-PG backgrounds in various scenes compared with the existing indices. The APGI achieved the PG mapping accuracy with an OA of 90.63% ~ 97.50% and an F1 score of 80.56% ~ 96.20% in all study cases. Furthermore, the APGI also showed its robustness in seasonal variations and different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼的忘幽完成签到,获得积分10
1秒前
Hello应助HighFeng_Lei采纳,获得10
2秒前
5秒前
ok完成签到,获得积分10
5秒前
MrTStar完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
cherrychou完成签到,获得积分10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
浮浮世世应助科研通管家采纳,获得30
9秒前
打打应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
浮浮世世应助科研通管家采纳,获得30
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
风中问晴发布了新的文献求助10
11秒前
迅速泽洋发布了新的文献求助10
11秒前
12秒前
CXS发布了新的文献求助10
12秒前
14秒前
秀丽的短靴完成签到,获得积分10
14秒前
所所应助吉良吉影采纳,获得10
16秒前
samantha817完成签到,获得积分10
16秒前
JamesPei应助长情火龙果采纳,获得10
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422