A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images

遥感 环境科学 农业 比例(比率) 温室 索引(排版) 植被指数 计算机科学 叶面积指数 地理 归一化差异植被指数 地图学 农学 生物 万维网 考古
作者
Peng Zhang,Peijun Du,Shanchuan Guo,Wei Zhang,Pengfei Tang,Jike Chen,Hongrui Zheng
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:276: 113042-113042 被引量:51
标识
DOI:10.1016/j.rse.2022.113042
摘要

As an efficient mode of modern agriculture, plastic greenhouse (PG) has significantly increased crop yields, but it is also criticized for changing the agriculture landscape and posing a threat to the environment. Accurate and timely information on PG distribution is essential for the strategic planning of modern agriculture as well as the projection of the environmental impacts. However, PG mapping over a large area has been a long-term challenge. Compared with classifier-based methods, index-based methods have the advantages of fast speed and convenience, which are very suitable for rapid large-scale mapping. The existing PG indices face the diversity of PG types and background environments, and the seasonal variation of PG spectra. To solve these problems, this study proposes a novel spectral index using Sentinel-2 images, namely the Advanced Plastic Greenhouse Index (APGI), to map PGs at a large scale. Four typical PG planting regions in the world, including Almería (Spain), Anamur (Turkey), Weifang (China), and Nantong (China), were selected as study areas. Based on the spectral analysis, some common spectral characteristics of PGs (i.e., high reflectance in NIR wavelengths and strong absorption in red and SWIR2 wavelengths) were observed and used in the APGI for highlighting PG areas. Besides, the coastal aerosol band and the red band were selected as optimal indicators to distinguish PG from other land covers which share similar spectral characteristics with PG. The experimental results indicate that the APGI has obvious advantages in enhancing PG information and suppressing non-PG backgrounds in various scenes compared with the existing indices. The APGI achieved the PG mapping accuracy with an OA of 90.63% ~ 97.50% and an F1 score of 80.56% ~ 96.20% in all study cases. Furthermore, the APGI also showed its robustness in seasonal variations and different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXY完成签到,获得积分10
1秒前
xiuwen发布了新的文献求助10
1秒前
啦啦啦完成签到,获得积分10
1秒前
Umwandlung完成签到,获得积分10
3秒前
gorgeousgaga完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI5应助ipeakkka采纳,获得10
5秒前
852应助章家炜采纳,获得10
6秒前
Gauss应助张小汉采纳,获得30
8秒前
嘻嘻发布了新的文献求助10
8秒前
杰哥完成签到 ,获得积分10
9秒前
Ava应助赵小可可可可采纳,获得10
9秒前
科研通AI5应助kento采纳,获得30
10秒前
nkmenghan发布了新的文献求助10
11秒前
14秒前
redondo10完成签到,获得积分0
15秒前
16秒前
乔qiao发布了新的文献求助30
19秒前
WZ0904发布了新的文献求助10
20秒前
poegtam完成签到,获得积分10
21秒前
大胆盼兰发布了新的文献求助10
22秒前
wuyan204完成签到 ,获得积分10
23秒前
windcreator完成签到,获得积分10
23秒前
redondo5完成签到,获得积分0
23秒前
wangrswjx完成签到 ,获得积分10
23秒前
科研通AI5应助su采纳,获得10
23秒前
26秒前
28秒前
小二郎应助嘻嘻采纳,获得10
28秒前
yun完成签到 ,获得积分10
29秒前
29秒前
31秒前
健忘曼冬发布了新的文献求助10
31秒前
redondo完成签到,获得积分10
31秒前
momo完成签到,获得积分10
32秒前
希望天下0贩的0应助meng采纳,获得10
33秒前
龙歪歪发布了新的文献求助10
34秒前
34秒前
暮城完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849