A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images

遥感 环境科学 农业 比例(比率) 温室 索引(排版) 植被指数 计算机科学 叶面积指数 地理 归一化差异植被指数 地图学 农学 考古 万维网 生物
作者
Peng Zhang,Peijun Du,Shanchuan Guo,Wei Zhang,Pengfei Tang,Jike Chen,Hongrui Zheng
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:276: 113042-113042 被引量:51
标识
DOI:10.1016/j.rse.2022.113042
摘要

As an efficient mode of modern agriculture, plastic greenhouse (PG) has significantly increased crop yields, but it is also criticized for changing the agriculture landscape and posing a threat to the environment. Accurate and timely information on PG distribution is essential for the strategic planning of modern agriculture as well as the projection of the environmental impacts. However, PG mapping over a large area has been a long-term challenge. Compared with classifier-based methods, index-based methods have the advantages of fast speed and convenience, which are very suitable for rapid large-scale mapping. The existing PG indices face the diversity of PG types and background environments, and the seasonal variation of PG spectra. To solve these problems, this study proposes a novel spectral index using Sentinel-2 images, namely the Advanced Plastic Greenhouse Index (APGI), to map PGs at a large scale. Four typical PG planting regions in the world, including Almería (Spain), Anamur (Turkey), Weifang (China), and Nantong (China), were selected as study areas. Based on the spectral analysis, some common spectral characteristics of PGs (i.e., high reflectance in NIR wavelengths and strong absorption in red and SWIR2 wavelengths) were observed and used in the APGI for highlighting PG areas. Besides, the coastal aerosol band and the red band were selected as optimal indicators to distinguish PG from other land covers which share similar spectral characteristics with PG. The experimental results indicate that the APGI has obvious advantages in enhancing PG information and suppressing non-PG backgrounds in various scenes compared with the existing indices. The APGI achieved the PG mapping accuracy with an OA of 90.63% ~ 97.50% and an F1 score of 80.56% ~ 96.20% in all study cases. Furthermore, the APGI also showed its robustness in seasonal variations and different datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
东明发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
song发布了新的文献求助10
2秒前
梨江鱼完成签到,获得积分10
2秒前
乐鱼发布了新的文献求助10
3秒前
4秒前
谨慎的凝丝完成签到,获得积分10
4秒前
闺音完成签到,获得积分10
4秒前
Jasper应助crepe采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
SAD发布了新的文献求助10
7秒前
yy发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
abcdefg完成签到,获得积分10
11秒前
小金鱼发布了新的文献求助10
11秒前
木子完成签到 ,获得积分10
12秒前
爆米花应助13采纳,获得10
12秒前
Janely完成签到,获得积分10
13秒前
坚强香旋发布了新的文献求助10
13秒前
周周发布了新的文献求助10
14秒前
hohokuz完成签到,获得积分10
15秒前
Joy完成签到,获得积分10
15秒前
16秒前
仲半邪完成签到,获得积分10
16秒前
zz发布了新的文献求助10
16秒前
草莓不梅发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146