已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BiDKT: Deep Knowledge Tracing with BERT

正确性 追踪 计算机科学 深度学习 人工智能 背景(考古学) 任务(项目管理) 机器学习 循环神经网络 深层神经网络 人工神经网络 算法 程序设计语言 工程类 生物 古生物学 系统工程
作者
Weicong Tan,Yuan Jin,Ming Liu,He Zhang
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 260-278 被引量:1
标识
DOI:10.1007/978-3-030-98005-4_19
摘要

Deep knowledge Tracing is a family of deep learning models that aim to predict students’ future correctness of responses for different subjects (to indicate whether they have mastered the subjects) based on their previous histories of interactions with the subjects. Early deep knowledge tracing models mostly rely on recurrent neural networks (RNNs) that can only learn from a uni-directional context from the response sequences during the model training. An alternative for learning from the context in both directions from those sequences is to use the bidirectional deep learning models. The most recent significant advance in this regard is BERT, a transformer-style bidirectional model, which has outperformed numerous RNN models on several NLP tasks. Therefore, we apply and adapt the BERT model to the deep knowledge tracing task, for which we propose the model BiDKT. It is trained under a masked correctness recovery task where the model predicts the correctness of a small percentage of randomly masked responses based on their bidirectional context in the sequences. We conducted experiments on several real-world knowledge tracing datasets and show that BiDKT can outperform some of the state-of-the-art approaches on predicting the correctness of future student responses for some of the datasets. We have also discussed the possible reasons why BiDKT has underperformed in certain scenarios. Finally, we study the impacts of several key components of BiDKT on its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
徐梦曦发布了新的文献求助10
3秒前
4秒前
5秒前
完美世界应助可研小冲采纳,获得10
6秒前
浮游应助超级万声采纳,获得10
6秒前
7秒前
CipherSage应助胜似闲庭信步采纳,获得10
7秒前
12秒前
欢呼的忘幽完成签到,获得积分10
13秒前
Hello应助HighFeng_Lei采纳,获得10
14秒前
17秒前
ok完成签到,获得积分10
17秒前
MrTStar完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
20秒前
浮游应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
cherrychou完成签到,获得积分10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
21秒前
思源应助科研通管家采纳,获得10
21秒前
浮浮世世应助科研通管家采纳,获得30
21秒前
打打应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
浮浮世世应助科研通管家采纳,获得30
22秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
风中问晴发布了新的文献求助10
23秒前
迅速泽洋发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422