重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

BiDKT: Deep Knowledge Tracing with BERT

正确性 追踪 计算机科学 深度学习 人工智能 背景(考古学) 任务(项目管理) 机器学习 循环神经网络 深层神经网络 人工神经网络 算法 程序设计语言 工程类 生物 古生物学 系统工程
作者
Weicong Tan,Yuan Jin,Ming Liu,He Zhang
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 260-278 被引量:1
标识
DOI:10.1007/978-3-030-98005-4_19
摘要

Deep knowledge Tracing is a family of deep learning models that aim to predict students’ future correctness of responses for different subjects (to indicate whether they have mastered the subjects) based on their previous histories of interactions with the subjects. Early deep knowledge tracing models mostly rely on recurrent neural networks (RNNs) that can only learn from a uni-directional context from the response sequences during the model training. An alternative for learning from the context in both directions from those sequences is to use the bidirectional deep learning models. The most recent significant advance in this regard is BERT, a transformer-style bidirectional model, which has outperformed numerous RNN models on several NLP tasks. Therefore, we apply and adapt the BERT model to the deep knowledge tracing task, for which we propose the model BiDKT. It is trained under a masked correctness recovery task where the model predicts the correctness of a small percentage of randomly masked responses based on their bidirectional context in the sequences. We conducted experiments on several real-world knowledge tracing datasets and show that BiDKT can outperform some of the state-of-the-art approaches on predicting the correctness of future student responses for some of the datasets. We have also discussed the possible reasons why BiDKT has underperformed in certain scenarios. Finally, we study the impacts of several key components of BiDKT on its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助kun采纳,获得10
1秒前
1秒前
852应助大荷子她爸采纳,获得30
2秒前
wzy发布了新的文献求助10
2秒前
2秒前
李爱国应助静静采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
absb发布了新的文献求助10
6秒前
乐乐应助wise111采纳,获得10
7秒前
苹果元瑶完成签到 ,获得积分10
7秒前
rh发布了新的文献求助10
8秒前
zll发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Huguizhou发布了新的文献求助10
10秒前
10秒前
Snoopy发布了新的文献求助10
11秒前
英俊的铭应助奋斗映天采纳,获得10
12秒前
qwe完成签到,获得积分10
13秒前
刻苦的旺仔完成签到,获得积分10
13秒前
Hello应助zcy采纳,获得10
14秒前
zll完成签到,获得积分10
14秒前
14秒前
尼古拉斯.科研.红完成签到 ,获得积分10
15秒前
慕青应助rh采纳,获得10
15秒前
15秒前
跳跃的迎荷完成签到 ,获得积分10
15秒前
16秒前
wzy完成签到,获得积分20
16秒前
qwe发布了新的文献求助10
16秒前
科研通AI6应助aa采纳,获得10
17秒前
SciGPT应助勤奋的远锋采纳,获得10
17秒前
17秒前
Tbby发布了新的文献求助10
18秒前
4AF关闭了4AF文献求助
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739