BiDKT: Deep Knowledge Tracing with BERT

正确性 追踪 计算机科学 深度学习 人工智能 背景(考古学) 任务(项目管理) 机器学习 循环神经网络 深层神经网络 人工神经网络 算法 程序设计语言 工程类 生物 古生物学 系统工程
作者
Weicong Tan,Yuan Jin,Ming Liu,He Zhang
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 260-278 被引量:1
标识
DOI:10.1007/978-3-030-98005-4_19
摘要

Deep knowledge Tracing is a family of deep learning models that aim to predict students’ future correctness of responses for different subjects (to indicate whether they have mastered the subjects) based on their previous histories of interactions with the subjects. Early deep knowledge tracing models mostly rely on recurrent neural networks (RNNs) that can only learn from a uni-directional context from the response sequences during the model training. An alternative for learning from the context in both directions from those sequences is to use the bidirectional deep learning models. The most recent significant advance in this regard is BERT, a transformer-style bidirectional model, which has outperformed numerous RNN models on several NLP tasks. Therefore, we apply and adapt the BERT model to the deep knowledge tracing task, for which we propose the model BiDKT. It is trained under a masked correctness recovery task where the model predicts the correctness of a small percentage of randomly masked responses based on their bidirectional context in the sequences. We conducted experiments on several real-world knowledge tracing datasets and show that BiDKT can outperform some of the state-of-the-art approaches on predicting the correctness of future student responses for some of the datasets. We have also discussed the possible reasons why BiDKT has underperformed in certain scenarios. Finally, we study the impacts of several key components of BiDKT on its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达萤完成签到 ,获得积分10
1秒前
欣欣发布了新的文献求助10
3秒前
3秒前
4秒前
李健应助少年的回忆采纳,获得10
6秒前
晨曦完成签到,获得积分10
6秒前
冰红茶完成签到,获得积分10
6秒前
阿斯戳发布了新的文献求助10
9秒前
球球尧伞耳完成签到,获得积分10
10秒前
bboo完成签到,获得积分10
11秒前
13秒前
13秒前
留胡子的之云完成签到,获得积分10
13秒前
13秒前
大模型应助梁平采纳,获得10
16秒前
顾矜应助www采纳,获得10
17秒前
在水一方应助阿斯戳采纳,获得10
17秒前
18秒前
desperado发布了新的文献求助10
18秒前
shenwei发布了新的文献求助10
18秒前
20秒前
Hello应助冰霜采纳,获得10
20秒前
leilei发布了新的文献求助10
21秒前
俭朴自中完成签到,获得积分10
22秒前
23秒前
zy完成签到 ,获得积分10
25秒前
阿斯戳完成签到,获得积分20
25秒前
lilink完成签到 ,获得积分20
26秒前
JamesPei应助能干数据线采纳,获得10
26秒前
26秒前
27秒前
科目三应助zhaoyinghua采纳,获得10
29秒前
大兵发布了新的文献求助10
30秒前
mxtsusan完成签到,获得积分20
30秒前
30秒前
31秒前
31秒前
丘比特应助甜馨采纳,获得10
32秒前
33秒前
可靠的海豚完成签到 ,获得积分10
33秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384107
求助须知:如何正确求助?哪些是违规求助? 4507070
关于积分的说明 14026579
捐赠科研通 4416653
什么是DOI,文献DOI怎么找? 2426089
邀请新用户注册赠送积分活动 1418888
关于科研通互助平台的介绍 1397100