Multi-view graph convolutional networks with attention mechanism

计算机科学 图形 理论计算机科学 网络拓扑 邻接矩阵 稳健性(进化) 利用 人工智能 机器学习 数据挖掘 计算机安全 生物化学 基因 操作系统 化学
作者
Kaixuan Yao,Jiye Liang,Jianqing Liang,Ming Li,Feilong Cao
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:307: 103708-103708 被引量:46
标识
DOI:10.1016/j.artint.2022.103708
摘要

Recent advances in graph convolutional networks (GCNs), which mainly focus on how to exploit information from different hops of neighbors in an efficient way, have brought substantial improvement to many graph data modeling tasks. Most of the existing GCN-based models however are built on the basis of a fixed adjacency matrix, i.e., a single view topology of the underlying graph. That inherently limits the expressive power of the developed models especially when the raw graphs are often noisy or even incomplete due to the inevitably error-prone data measurement or collection. In this paper, we propose a novel framework, termed Multi-View Graph Convolutional Networks with Attention Mechanism (MAGCN), by incorporating multiple views of topology and an attention-based feature aggregation strategy into the computation of graph convolution. As an advanced variant of GCNs, MAGCN is fed with multiple "trustable" topologies, which already exist for a given task or are empirically generated by some classical graph construction methods, which has good potential to produce a better learning representation for downstream tasks. Furthermore, we present some theoretical analysis about the expressive power and flexibility of MAGCN, which provides a general explanation as to why multi-view based methods can potentially outperform those relying on a single view. Our experimental study demonstrates the state-of-the-art accuracies of MAGCN on Cora, Citeseer, and Pubmed datasets. Robustness analysis is also undertaken to show the advantage of MAGCN in handling some uncertainty issues in node classification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史淼荷发布了新的文献求助20
刚刚
1秒前
1秒前
华仔应助体贴薯片采纳,获得10
1秒前
znn发布了新的文献求助10
1秒前
CQ发布了新的文献求助10
2秒前
星月完成签到,获得积分10
2秒前
MQ_sun发布了新的文献求助10
3秒前
hansongluo发布了新的文献求助10
3秒前
3秒前
3秒前
糖宝发布了新的文献求助10
3秒前
今后应助xuxuux采纳,获得10
4秒前
4秒前
美满的安柏完成签到,获得积分10
4秒前
贺兰发布了新的文献求助10
4秒前
4秒前
4秒前
研友_VZG7GZ应助深情妙菡采纳,获得30
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
鹤轩应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
稳重的蛟凤应助hbz采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
5秒前
sswbzh应助科研通管家采纳,获得50
5秒前
彭于彦祖应助科研通管家采纳,获得150
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
英俊的铭应助skyangar采纳,获得10
5秒前
5秒前
求助人员应助科研通管家采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785