Multi-view graph convolutional networks with attention mechanism

计算机科学 图形 理论计算机科学 网络拓扑 邻接矩阵 稳健性(进化) 利用 人工智能 机器学习 数据挖掘 计算机安全 生物化学 基因 操作系统 化学
作者
Kaixuan Yao,Jiye Liang,Jianqing Liang,Ming Li,Feilong Cao
出处
期刊:Artificial Intelligence [Elsevier BV]
卷期号:307: 103708-103708 被引量:46
标识
DOI:10.1016/j.artint.2022.103708
摘要

Recent advances in graph convolutional networks (GCNs), which mainly focus on how to exploit information from different hops of neighbors in an efficient way, have brought substantial improvement to many graph data modeling tasks. Most of the existing GCN-based models however are built on the basis of a fixed adjacency matrix, i.e., a single view topology of the underlying graph. That inherently limits the expressive power of the developed models especially when the raw graphs are often noisy or even incomplete due to the inevitably error-prone data measurement or collection. In this paper, we propose a novel framework, termed Multi-View Graph Convolutional Networks with Attention Mechanism (MAGCN), by incorporating multiple views of topology and an attention-based feature aggregation strategy into the computation of graph convolution. As an advanced variant of GCNs, MAGCN is fed with multiple "trustable" topologies, which already exist for a given task or are empirically generated by some classical graph construction methods, which has good potential to produce a better learning representation for downstream tasks. Furthermore, we present some theoretical analysis about the expressive power and flexibility of MAGCN, which provides a general explanation as to why multi-view based methods can potentially outperform those relying on a single view. Our experimental study demonstrates the state-of-the-art accuracies of MAGCN on Cora, Citeseer, and Pubmed datasets. Robustness analysis is also undertaken to show the advantage of MAGCN in handling some uncertainty issues in node classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水电费完成签到 ,获得积分10
刚刚
科研通AI2S应助liu采纳,获得10
1秒前
1秒前
cherish完成签到,获得积分10
2秒前
2秒前
在水一方应助pincoudegushi采纳,获得10
2秒前
2秒前
刘新完成签到,获得积分10
2秒前
糟糕的铁锤应助Beton_X采纳,获得50
2秒前
2秒前
2秒前
结实的秋凌完成签到,获得积分10
3秒前
4秒前
敬老院N号应助kathy采纳,获得30
4秒前
陈住气发布了新的文献求助10
4秒前
5秒前
希望天下0贩的0应助Momo采纳,获得10
5秒前
absb发布了新的文献求助10
6秒前
Forez发布了新的文献求助10
6秒前
zhuzhu发布了新的文献求助10
6秒前
7秒前
慕青应助不安的秋白采纳,获得10
7秒前
iii发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
称心寒松发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
yehaidadao完成签到,获得积分10
8秒前
欢呼妙菱发布了新的文献求助10
10秒前
10秒前
MizzZeus完成签到,获得积分10
10秒前
10秒前
善学以致用应助up采纳,获得10
10秒前
11秒前
ll发布了新的文献求助10
11秒前
星辰大海应助蚕宝宝小子采纳,获得10
12秒前
雪白的面包完成签到 ,获得积分10
13秒前
类囊体薄膜完成签到,获得积分10
13秒前
absb完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650