Application of online multitask learning based on least squares support vector regression in the financial market

机器学习 计算机科学 支持向量机 人工智能 时间序列 回归 任务(项目管理) 多任务学习 最小二乘支持向量机 金融市场 光学(聚焦) 财务 系列(地层学) 在线机器学习 利用 深度学习 人工神经网络 统计 数学 工程类 古生物学 物理 经济 光学 生物 系统工程 计算机安全
作者
Heng-Chang Zhang,Qing Wu,Fei-Yan Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:121: 108754-108754 被引量:12
标识
DOI:10.1016/j.asoc.2022.108754
摘要

As is known, the financial market prediction and high investing value is receiving more increasing attentions nowadays. But affected by many complex factors, it is difficult to perform the financial market forecast accurately. Among the solving methods, the time-series prediction has caused the focus for its great predictive effect in many fields. However, most of the existing works focus on single-time-series analysis and cannot obtain good learning results because it trains tasks independently and ignores the cross-correlation among multiple time series. Motivated by the multitask learning, a novel online multitask learning based on the least squares support vector regression (OMTL-LS-SVR) algorithm is proposed for multi-step-ahead financial time-series prediction. OMTL-LS-SVR regards multiple related time series as different learning tasks, which are trained in parallel to obtain the prediction model and shorten the training time. Under this scheme, the knowledge from one certain task can benefit others, allowing it to exploit the relatedness among multiple subtasks. The OMTL-LS-SVR is applied to perform the time-series tendency prediction in four branches of China’s financial market, and the experimental results demonstrate the effectiveness of the proposed multitask learning algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
3秒前
Owen应助我要吃蛋挞采纳,获得10
3秒前
yangyu完成签到,获得积分10
3秒前
一郭红烧肉完成签到,获得积分20
3秒前
永不停歇奈格里完成签到,获得积分10
3秒前
科研通AI6应助宇与鱼采纳,获得10
4秒前
香蕉觅云应助SS采纳,获得10
4秒前
zzzz发布了新的文献求助10
4秒前
4秒前
chixueqi发布了新的文献求助10
5秒前
Xu完成签到,获得积分10
6秒前
7秒前
7秒前
充电宝应助Desperado采纳,获得10
8秒前
英俊的铭应助zhouzhou采纳,获得10
8秒前
卖萌的秋田完成签到,获得积分10
8秒前
科研通AI5应助刘赟采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
0806发布了新的文献求助10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
蠩讉鷴完成签到 ,获得积分10
9秒前
栗子应助科研通管家采纳,获得10
10秒前
2千儿完成签到 ,获得积分10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907