激光雷达
屋顶
测距
Echo(通信协议)
计算机科学
条纹
点云
遥感
萃取(化学)
计算机视觉
人工智能
光学
地质学
地理
物理
电信
计算机网络
化学
考古
色谱法
作者
Han Shen,Zhiwei Dong,Yongji Yan,Rongwei Fan,Yu‐Gang Jiang,Zhaodong Chen,Deying Chen
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2022-03-07
卷期号:61 (11): 2923-2923
被引量:7
摘要
Light detection and ranging (LiDAR) is a type of essential tool for urban planning and geoinformation extraction. Airborne streak tube imaging LiDAR (ASTIL) is a new system with great advantages in the rapid collection of remote sensing data. To the best of our knowledge, a new method to extract a building roof from the echo images of ASTIL is proposed. We improve YOLOv5s with a one-shot aggregation (OSA) module to improve efficiency. The experimental results show that the mean average precision of the OSA-YOLOv5s algorithm can reach 95.2%, and the frames per second can reach 11.74 using a CPU and 39.39 using a GPU. The method proposed can extract building objects efficiently from the echo images of ASTIL and acquire the building roof point cloud.
科研通智能强力驱动
Strongly Powered by AbleSci AI