Investigation of a derived adverse outcome pathway (AOP) network for endocrine-mediated perturbations

不良结局途径 计算机科学 工作流程 生物 计算生物学 数据库
作者
Janani Ravichandran,Bagavathy Shanmugam Karthikeyan,Areejit Samal
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:826: 154112-154112 被引量:27
标识
DOI:10.1016/j.scitotenv.2022.154112
摘要

An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luowenbo发布了新的文献求助10
刚刚
活力完成签到,获得积分10
1秒前
悦耳的谷芹完成签到 ,获得积分10
1秒前
2秒前
ilmiss完成签到,获得积分10
2秒前
llw发布了新的文献求助10
3秒前
YFL完成签到,获得积分10
3秒前
3秒前
kk_yang完成签到,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
wwz应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
向阳发布了新的文献求助10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得20
6秒前
zcl应助科研通管家采纳,获得150
6秒前
wwz应助科研通管家采纳,获得10
6秒前
chenqiumu应助科研通管家采纳,获得30
6秒前
Ankher应助科研通管家采纳,获得30
6秒前
Ankher应助科研通管家采纳,获得30
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
GuoH应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074