Investigation of a derived adverse outcome pathway (AOP) network for endocrine-mediated perturbations

不良结局途径 计算机科学 工作流程 生物 计算生物学 数据库
作者
Janani Ravichandran,Bagavathy Shanmugam Karthikeyan,Areejit Samal
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:826: 154112-154112 被引量:27
标识
DOI:10.1016/j.scitotenv.2022.154112
摘要

An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟暮完成签到 ,获得积分10
1秒前
科研通AI6应助lbw采纳,获得10
2秒前
科研开门发布了新的文献求助10
2秒前
多和5的武器完成签到,获得积分10
2秒前
研友_ZAe4qZ完成签到,获得积分20
3秒前
3秒前
3秒前
今后应助gy采纳,获得10
3秒前
11完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
卡西法完成签到,获得积分10
6秒前
机灵的忆梅完成签到,获得积分10
6秒前
不想干活应助infe采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
不想干活应助zjq采纳,获得10
8秒前
典雅的俊驰应助Jing采纳,获得10
9秒前
咸鱼发布了新的文献求助20
9秒前
9秒前
9秒前
爆米花应助Jane采纳,获得10
9秒前
甘蔗发布了新的文献求助30
9秒前
9秒前
淡然谷秋完成签到 ,获得积分10
10秒前
上官若男应助柒月樊霜采纳,获得10
10秒前
木头人呐完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
诚心中恶发布了新的文献求助10
12秒前
背书强完成签到 ,获得积分10
12秒前
12秒前
Jack123完成签到,获得积分10
13秒前
SciGPT应助认真的缘郡采纳,获得10
13秒前
13秒前
大模型应助乖猫要努力采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826