Investigation of a derived adverse outcome pathway (AOP) network for endocrine-mediated perturbations

不良结局途径 计算机科学 工作流程 生物 计算生物学 数据库
作者
Janani Ravichandran,Bagavathy Shanmugam Karthikeyan,Areejit Samal
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:826: 154112-154112 被引量:27
标识
DOI:10.1016/j.scitotenv.2022.154112
摘要

An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾星发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
健忘惜海发布了新的文献求助10
3秒前
逍遥发布了新的文献求助10
5秒前
无问完成签到,获得积分10
6秒前
人抗破伤风免疫球蛋白完成签到 ,获得积分10
6秒前
runzhi完成签到,获得积分10
8秒前
研友_VZG7GZ应助健忘惜海采纳,获得10
9秒前
缥缈熊猫完成签到,获得积分20
9秒前
FashionBoy应助干净绮烟采纳,获得10
9秒前
纪凡祥完成签到,获得积分10
9秒前
罗大大完成签到 ,获得积分0
10秒前
浮游应助伊芷采纳,获得10
10秒前
氧泡泡发布了新的文献求助10
11秒前
11秒前
14秒前
14秒前
天马完成签到,获得积分20
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
啾星完成签到,获得积分10
18秒前
18秒前
19秒前
西斯塔完成签到,获得积分20
19秒前
20秒前
20秒前
小黑完成签到,获得积分10
21秒前
阜睿发布了新的文献求助10
22秒前
22秒前
22秒前
汉堡包应助wenquan采纳,获得10
23秒前
flypipidan完成签到,获得积分10
23秒前
23秒前
orixero应助没名字采纳,获得10
24秒前
sky完成签到,获得积分10
25秒前
25秒前
圣诞节发布了新的文献求助10
26秒前
研友_Z7Xdl8发布了新的文献求助10
27秒前
ban完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483