Investigation of a derived adverse outcome pathway (AOP) network for endocrine-mediated perturbations

不良结局途径 计算机科学 工作流程 生物 计算生物学 数据库
作者
Janani Ravichandran,Bagavathy Shanmugam Karthikeyan,Areejit Samal
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:826: 154112-154112 被引量:27
标识
DOI:10.1016/j.scitotenv.2022.154112
摘要

An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinjinj发布了新的文献求助10
1秒前
Zkxxxx应助想写文章的绿采纳,获得30
1秒前
1秒前
幸福的尔竹完成签到,获得积分10
2秒前
3秒前
Ava应助绝望核弹采纳,获得10
3秒前
3秒前
斯文败类应助凌惠娟采纳,获得10
3秒前
大模型应助罗婉婷采纳,获得10
3秒前
Cactus应助王某明采纳,获得10
4秒前
田様应助雪雪儿采纳,获得10
4秒前
Frank发布了新的文献求助10
5秒前
5秒前
无花果应助轻松的万恶采纳,获得10
5秒前
6秒前
www发布了新的文献求助10
6秒前
研友_VZG64n发布了新的文献求助10
7秒前
7秒前
光光完成签到,获得积分10
8秒前
slp123456完成签到,获得积分20
8秒前
9秒前
1234发布了新的文献求助10
9秒前
无花果应助一鸣采纳,获得10
10秒前
10秒前
11秒前
时米米米发布了新的文献求助10
11秒前
大模型应助xinying采纳,获得10
11秒前
12秒前
12秒前
陌生完成签到 ,获得积分10
13秒前
领导范儿应助淡然的夜柳采纳,获得10
13秒前
14秒前
17秒前
JamesPei应助1234645678采纳,获得10
18秒前
18秒前
小二郎应助小盼虫采纳,获得10
18秒前
18秒前
19秒前
ttm发布了新的文献求助30
19秒前
蜡笔完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788