Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunbrust发布了新的文献求助30
1秒前
张大星完成签到 ,获得积分10
2秒前
4秒前
4秒前
SHF完成签到 ,获得积分10
5秒前
6秒前
liamddd完成签到 ,获得积分10
7秒前
小何发布了新的文献求助10
11秒前
西瓜二郎发布了新的文献求助10
11秒前
哈哈哈66发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
22秒前
淡然葶完成签到 ,获得积分10
24秒前
27秒前
Singhi完成签到 ,获得积分10
27秒前
葛优发布了新的文献求助10
29秒前
30秒前
归尘发布了新的文献求助10
30秒前
31秒前
深情安青应助阔达苡采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
传奇3应助科研通管家采纳,获得10
35秒前
个性的荆应助科研通管家采纳,获得10
35秒前
wy.he应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
tuanheqi应助科研通管家采纳,获得150
36秒前
个性的荆应助科研通管家采纳,获得10
36秒前
iNk应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
natmed应助科研通管家采纳,获得10
36秒前
个性的荆应助科研通管家采纳,获得10
36秒前
彭于晏应助科研通管家采纳,获得10
36秒前
星辰大海应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
个性的荆应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652866
求助须知:如何正确求助?哪些是违规求助? 4788617
关于积分的说明 15061919
捐赠科研通 4811370
什么是DOI,文献DOI怎么找? 2573877
邀请新用户注册赠送积分活动 1529653
关于科研通互助平台的介绍 1488381