重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
进击的大叔完成签到,获得积分10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
renshiq完成签到,获得积分10
3秒前
3秒前
小宇子发布了新的文献求助10
4秒前
大卷完成签到,获得积分10
4秒前
wanci应助柳橙采纳,获得10
4秒前
阿艺完成签到,获得积分10
5秒前
浮游应助sk采纳,获得10
6秒前
CHENHAHA完成签到,获得积分10
6秒前
6秒前
昨夜書完成签到 ,获得积分10
6秒前
cui发布了新的文献求助10
7秒前
小蘑菇应助ssn采纳,获得10
7秒前
宋虹发布了新的文献求助10
7秒前
luluturn发布了新的文献求助30
7秒前
充电宝应助tjxz2002采纳,获得10
7秒前
8秒前
右右发布了新的文献求助10
8秒前
rr完成签到 ,获得积分10
9秒前
9秒前
丘比特应助123采纳,获得10
10秒前
11秒前
王yz发布了新的文献求助10
12秒前
bobqwera发布了新的文献求助10
12秒前
12秒前
王瑶完成签到,获得积分20
13秒前
小药丸完成签到 ,获得积分10
13秒前
李华完成签到,获得积分10
13秒前
lyric发布了新的文献求助10
13秒前
14秒前
Jasper应助ftx采纳,获得10
14秒前
TT发布了新的文献求助10
15秒前
xxy应助小白术采纳,获得40
15秒前
rinko完成签到 ,获得积分10
16秒前
16秒前
琪琪完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699