Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助秋中雨采纳,获得10
刚刚
xuezhixia完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
WT完成签到,获得积分10
2秒前
2秒前
2秒前
Yee完成签到,获得积分10
2秒前
中国大陆完成签到,获得积分10
2秒前
Atom完成签到,获得积分10
3秒前
瘦瘦听云发布了新的文献求助10
3秒前
小二郎应助赵世初采纳,获得10
3秒前
Flac完成签到,获得积分10
3秒前
3秒前
jingyu发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
内向煎饼发布了新的文献求助30
5秒前
xyg发布了新的文献求助10
5秒前
伶俐的星月完成签到,获得积分10
5秒前
Mandy完成签到,获得积分10
5秒前
5秒前
狗大王发布了新的文献求助10
6秒前
天天快乐应助tianmafei采纳,获得10
6秒前
自由的渗透奈鱼完成签到,获得积分10
6秒前
Sabrina发布了新的文献求助10
7秒前
隐形曼青应助通研科采纳,获得20
7秒前
hs完成签到,获得积分0
7秒前
西瓜发布了新的文献求助10
7秒前
yeppp发布了新的文献求助10
7秒前
科目三应助Astary采纳,获得10
8秒前
bbrfu发布了新的文献求助10
8秒前
Wendyyolo完成签到 ,获得积分10
8秒前
火星上曼冬完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624261
求助须知:如何正确求助?哪些是违规求助? 4710125
关于积分的说明 14949526
捐赠科研通 4778199
什么是DOI,文献DOI怎么找? 2553176
邀请新用户注册赠送积分活动 1515094
关于科研通互助平台的介绍 1475490