已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助七宝大当家采纳,获得10
3秒前
4秒前
抗氧剂发布了新的文献求助10
4秒前
llk完成签到 ,获得积分10
4秒前
可可钳完成签到,获得积分10
9秒前
9秒前
本本完成签到 ,获得积分10
9秒前
科研通AI2S应助Ye采纳,获得10
9秒前
10秒前
莘莘学子完成签到 ,获得积分10
11秒前
12秒前
简单完成签到 ,获得积分10
12秒前
慕青应助安详怀亦采纳,获得10
13秒前
JINFA发布了新的文献求助10
14秒前
15秒前
16秒前
Rdx发布了新的文献求助10
16秒前
18秒前
Yxs发布了新的文献求助10
18秒前
喜悦诗翠完成签到 ,获得积分10
18秒前
19秒前
Ye完成签到,获得积分10
19秒前
极速小鱼完成签到,获得积分10
21秒前
xie完成签到 ,获得积分10
21秒前
Oculus完成签到 ,获得积分10
22秒前
于思枫完成签到,获得积分10
23秒前
在水一方应助一榔头采纳,获得10
24秒前
一辰不染完成签到,获得积分10
24秒前
gaowei完成签到 ,获得积分10
25秒前
姆姆没买完成签到 ,获得积分0
29秒前
Criminology34应助yiyi采纳,获得10
29秒前
32秒前
清新的宛丝完成签到,获得积分10
33秒前
在水一方应助Rdx采纳,获得10
33秒前
小二郎应助lameliu采纳,获得10
35秒前
知闲完成签到,获得积分20
36秒前
狂野的梦之完成签到,获得积分10
36秒前
37秒前
王某人完成签到 ,获得积分10
38秒前
吕健发布了新的文献求助50
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759