Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
完美的冷荷完成签到,获得积分10
1秒前
1秒前
芳芳子完成签到 ,获得积分10
2秒前
浮生完成签到,获得积分10
2秒前
2秒前
专注的问寒应助内向迎蕾采纳,获得20
3秒前
XIAOATAIA完成签到,获得积分10
3秒前
amazeman111发布了新的文献求助10
4秒前
专注的问寒应助茜茜采纳,获得50
4秒前
沉默的驳发布了新的文献求助10
4秒前
4秒前
大意的惊蛰完成签到,获得积分10
4秒前
Yidie发布了新的文献求助10
5秒前
orixero应助沉睡的大马猴采纳,获得10
5秒前
个性凡儿发布了新的文献求助10
5秒前
6秒前
yummm完成签到 ,获得积分10
6秒前
7秒前
希望天下0贩的0应助囚徒采纳,获得10
7秒前
7秒前
蝉蝉完成签到,获得积分10
8秒前
醉熏的荣轩完成签到 ,获得积分10
8秒前
8秒前
英姑应助勤奋靖易采纳,获得10
8秒前
9秒前
10秒前
10秒前
耍酷的冷雪完成签到,获得积分10
10秒前
fff1发布了新的文献求助20
10秒前
个性凡儿完成签到,获得积分10
11秒前
11秒前
james发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
14秒前
陈诚完成签到,获得积分10
14秒前
yxl0214发布了新的文献求助10
14秒前
大模型应助帮抬抬采纳,获得10
14秒前
15秒前
慕青应助xiaoxiang采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709