Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syqlyd完成签到 ,获得积分10
刚刚
科研通AI2S应助zzznznnn采纳,获得10
1秒前
slm完成签到,获得积分10
1秒前
自觉士萧发布了新的文献求助10
2秒前
如意蓉完成签到,获得积分10
3秒前
4秒前
好运6连发布了新的文献求助10
4秒前
4秒前
5秒前
Cathy17sl完成签到,获得积分10
5秒前
zpctx完成签到,获得积分10
6秒前
大模型应助自觉士萧采纳,获得10
6秒前
陈新发布了新的文献求助10
8秒前
FashionBoy应助刘凯采纳,获得10
8秒前
幸福白安完成签到,获得积分20
8秒前
舒适砖家发布了新的文献求助10
8秒前
111发布了新的文献求助10
9秒前
fairy完成签到 ,获得积分10
9秒前
俊逸成危完成签到,获得积分10
9秒前
WNL发布了新的文献求助30
10秒前
zpctx发布了新的文献求助10
10秒前
陶嘉云完成签到,获得积分10
10秒前
11秒前
123by发布了新的文献求助10
12秒前
13秒前
今后应助孤星采纳,获得10
14秒前
清颜发布了新的文献求助10
14秒前
14秒前
15秒前
好运6连发布了新的文献求助10
15秒前
小离发布了新的文献求助10
15秒前
16秒前
月星发布了新的文献求助10
16秒前
科研通AI6应助小样采纳,获得80
17秒前
量子星尘发布了新的文献求助10
17秒前
秋天的雪发布了新的文献求助10
19秒前
刘凯发布了新的文献求助10
19秒前
尹雪儿完成签到,获得积分10
19秒前
19秒前
qq发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795