亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆觅珍发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
4秒前
腼腆钵钵鸡完成签到 ,获得积分10
4秒前
CodeCraft应助123456采纳,获得10
4秒前
5秒前
小二郎应助shinn采纳,获得10
5秒前
绝山完成签到,获得积分10
6秒前
flyabc完成签到,获得积分10
8秒前
大模型应助满意的觅夏采纳,获得10
9秒前
害羞的醉卉完成签到 ,获得积分10
10秒前
11秒前
14秒前
14秒前
aaaa发布了新的文献求助10
17秒前
麻瓜完成签到,获得积分10
20秒前
21秒前
21秒前
23秒前
24秒前
shinn发布了新的文献求助10
26秒前
科研通AI6.1应助aaaa采纳,获得10
27秒前
李琪发布了新的文献求助10
27秒前
闰土完成签到 ,获得积分10
29秒前
merry6669发布了新的文献求助10
31秒前
华仔应助chenchunli采纳,获得10
42秒前
noneface完成签到,获得积分10
44秒前
BYGYHQ完成签到 ,获得积分10
45秒前
领导范儿应助shinn采纳,获得10
46秒前
科研通AI6.1应助北宸采纳,获得10
49秒前
52秒前
科研通AI6.1应助js采纳,获得10
53秒前
嘻嘻完成签到 ,获得积分10
54秒前
54秒前
56秒前
56秒前
57秒前
1分钟前
1分钟前
shinn发布了新的文献求助10
1分钟前
岂曰无衣发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772179
求助须知:如何正确求助?哪些是违规求助? 5596564
关于积分的说明 15429271
捐赠科研通 4905254
什么是DOI,文献DOI怎么找? 2639292
邀请新用户注册赠送积分活动 1587214
关于科研通互助平台的介绍 1542061