Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RSC发布了新的文献求助10
1秒前
朵拉A梦发布了新的文献求助10
1秒前
1秒前
思源应助billevans采纳,获得30
1秒前
iu完成签到,获得积分10
1秒前
2秒前
starts发布了新的文献求助10
2秒前
早睡早起身体棒完成签到,获得积分10
2秒前
dy1994完成签到,获得积分10
2秒前
CipherSage应助小刘采纳,获得10
2秒前
景飞丹发布了新的文献求助10
3秒前
淡然老头完成签到,获得积分10
3秒前
Ava应助Yu采纳,获得10
4秒前
4秒前
葛彬洁发布了新的文献求助20
4秒前
今后应助姚序东采纳,获得10
4秒前
yokkio完成签到,获得积分10
5秒前
孙尧芳发布了新的文献求助10
5秒前
豨莶完成签到,获得积分10
5秒前
兔子完成签到,获得积分10
5秒前
silsotiscolor完成签到,获得积分10
6秒前
6秒前
7秒前
Lan完成签到,获得积分10
7秒前
7秒前
liangerla完成签到,获得积分10
7秒前
zszzzsss完成签到,获得积分10
7秒前
油炸小麻花完成签到,获得积分10
8秒前
Hello应助hgc采纳,获得10
8秒前
丘比特应助zxlllll采纳,获得10
8秒前
小渝干发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
江鑫楷发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
您的帮助将会点亮世界完成签到,获得积分10
10秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313