Fast Global Collision Detection Method Based on Feature-Point-Set for Robotic Machining of Large Complex Components

碰撞 碰撞检测 弹道 机械加工 特征(语言学) 计算机科学 航程(航空) 点(几何) 算法 符号 机器人 人工智能 数学 工程类 几何学 机械工程 算术 语言学 哲学 物理 计算机安全 天文 航空航天工程
作者
Qi Fan,Bo Tao,Zeyu Gong,Xingwei Zhao,Han Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 470-481 被引量:3
标识
DOI:10.1109/tase.2022.3157731
摘要

This paper presents a fast global collision detection method for robotic machining of large complex components, aiming to quickly determine whether there is a collision between the robot and the surrounding environment during the whole machining process. Geometric analysis shows that there are always some trajectory points on the motion path of the manipulator that are more likely to collide than the surrounding points during machining. These trajectory points with the highest collision probability within a certain range are defined as the feature points of global collision detection, and are used to replace all trajectory points to perform global collision detection, thus greatly improving the efficiency of related operations while ensuring accuracy. Compare to the traditional discrete collision detection method with computational complexity O( $\text{n}^{2}$ ), the computational complexity of the proposed method is only O(n). Numerical analysis and application experiments verify the effectiveness of the proposed method. Note to Practitioners—Motion planning in robotic machining of large complex components usually needs to perform a lot of global collision detection. Existing methods generally have the problems of large calculation and low efficiency, which seriously affects the efficiency of motion planning. This is mainly because a single global collision detection usually includes no less than $n$ times of static collision detection, where $n$ is the number of trajectory points. In order to solve this problem, we present a new global collision detection method based on feature-point-set. It does not need to traverse all trajectory points for static collision detection, but only needs to detect a few feature points, that is, the trajectory points most likely to collide within a certain range. On the premise of ensuring the collision detection accuracy, the proposed method greatly reduces the execution times of static collision detection, and significantly improves the computational efficiency of global collision detection. Numerical analysis and experiments show that this method effectively improves the efficiency of motion planning in robotic machining of large complex components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cynical发布了新的文献求助10
1秒前
小夏发布了新的文献求助10
1秒前
2秒前
Lucas应助木子采纳,获得10
2秒前
未央完成签到,获得积分10
2秒前
5秒前
现代绮玉发布了新的文献求助10
6秒前
sprileye完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
hey应助耿怀肖采纳,获得20
8秒前
9秒前
负责的方盒完成签到,获得积分10
10秒前
大将军完成签到,获得积分10
10秒前
123完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
悬夜发布了新的文献求助10
13秒前
科目三应助kelly9110采纳,获得10
14秒前
15秒前
15秒前
李渊成完成签到,获得积分10
16秒前
璇子完成签到,获得积分20
16秒前
逆流而上发布了新的文献求助10
16秒前
小井完成签到,获得积分10
16秒前
大模型应助四十四次日落采纳,获得10
18秒前
范白容完成签到 ,获得积分0
19秒前
科目三应助K.Cui采纳,获得10
19秒前
悠悠发布了新的文献求助10
21秒前
NoNoQ完成签到,获得积分10
21秒前
樱桃汽水发布了新的文献求助10
22秒前
22秒前
cynical完成签到,获得积分10
23秒前
23秒前
23秒前
Stella应助小井采纳,获得30
23秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594108
求助须知:如何正确求助?哪些是违规求助? 4679829
关于积分的说明 14811738
捐赠科研通 4645933
什么是DOI,文献DOI怎么找? 2534757
邀请新用户注册赠送积分活动 1502769
关于科研通互助平台的介绍 1469452