Artificial Intelligence for Automated Implant Identification in Total Hip Arthroplasty: A Multicenter External Validation Study Exceeding Two Million Plain Radiographs

医学 接收机工作特性 射线照相术 植入 人工智能 关节置换术 放射科 外科 计算机科学 内科学
作者
Jaret M. Karnuta,Michael P. Murphy,Bryan C. Luu,Michael J. Ryan,Heather S. Haeberle,Nicholas M. Brown,Richard Iorio,Antonia F. Chen,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:38 (10): 1998-2003.e1 被引量:15
标识
DOI:10.1016/j.arth.2022.03.002
摘要

The surgical management of complications after total hip arthroplasty (THA) necessitates accurate identification of the femoral implant manufacturer and model. Automated image processing using deep learning has been previously developed and internally validated; however, external validation is necessary prior to responsible application of artificial intelligence (AI)-based technologies.We trained, validated, and externally tested a deep learning system to classify femoral-sided THA implants as one of the 8 models from 2 manufacturers derived from 2,954 original, deidentified, retrospectively collected anteroposterior plain radiographs across 3 academic referral centers and 13 surgeons. From these radiographs, 2,117 were used for training, 249 for validation, and 588 for external testing. Augmentation was applied to the training set (n = 2,117,000) to increase model robustness. Performance was evaluated by area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. Implant identification processing speed was calculated.The training and testing sets were drawn from statistically different populations of implants (P < .001). After 1,000 training epochs by the deep learning system, the system discriminated 8 implant models with a mean area under the receiver operating characteristic curve of 0.991, accuracy of 97.9%, sensitivity of 88.6%, and specificity of 98.9% in the external testing dataset of 588 anteroposterior radiographs. The software classified implants at a mean speed of 0.02 seconds per image.An AI-based software demonstrated excellent internal and external validation. Although continued surveillance is necessary with implant library expansion, this software represents responsible and meaningful clinical application of AI with immediate potential to globally scale and assist in preoperative planning prior to revision THA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monkey1976发布了新的文献求助10
刚刚
SiDi完成签到,获得积分10
1秒前
烟花应助椰子壳采纳,获得10
1秒前
1秒前
2秒前
奶茶完成签到,获得积分10
2秒前
liu完成签到,获得积分10
3秒前
3秒前
昂口3发布了新的文献求助10
3秒前
高挑的尔琴完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
盈盈一水间完成签到,获得积分10
3秒前
不可思议的止血钳完成签到,获得积分10
4秒前
jzmulyl发布了新的文献求助10
4秒前
qi发布了新的文献求助10
5秒前
5秒前
5秒前
天气完成签到,获得积分20
5秒前
meimale发布了新的文献求助10
6秒前
6秒前
CodeCraft应助Lisa采纳,获得10
6秒前
落后以旋完成签到,获得积分10
6秒前
66wudi完成签到,获得积分10
7秒前
7秒前
xiaowei666完成签到,获得积分10
8秒前
8秒前
文献小白发布了新的文献求助10
9秒前
柠安发布了新的文献求助10
9秒前
落后以旋发布了新的文献求助10
9秒前
Lucas应助孤独烤鸡采纳,获得10
9秒前
喻明辉完成签到,获得积分10
10秒前
英俊的铭应助Tmac采纳,获得10
10秒前
在水一方应助Schwarz采纳,获得30
11秒前
11秒前
12秒前
yanyanyan发布了新的文献求助20
12秒前
yznfly应助tanglu采纳,获得100
13秒前
SuperZzz发布了新的文献求助50
13秒前
Wei_Li发布了新的文献求助10
13秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306