Artificial Intelligence for Automated Implant Identification in Total Hip Arthroplasty: A Multicenter External Validation Study Exceeding Two Million Plain Radiographs

医学 接收机工作特性 射线照相术 植入 人工智能 关节置换术 放射科 外科 计算机科学 内科学
作者
Jaret M. Karnuta,Michael P. Murphy,Bryan C. Luu,Michael J. Ryan,Heather S. Haeberle,Nicholas M. Brown,Richard Iorio,Antonia F. Chen,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:38 (10): 1998-2003.e1 被引量:15
标识
DOI:10.1016/j.arth.2022.03.002
摘要

The surgical management of complications after total hip arthroplasty (THA) necessitates accurate identification of the femoral implant manufacturer and model. Automated image processing using deep learning has been previously developed and internally validated; however, external validation is necessary prior to responsible application of artificial intelligence (AI)-based technologies.We trained, validated, and externally tested a deep learning system to classify femoral-sided THA implants as one of the 8 models from 2 manufacturers derived from 2,954 original, deidentified, retrospectively collected anteroposterior plain radiographs across 3 academic referral centers and 13 surgeons. From these radiographs, 2,117 were used for training, 249 for validation, and 588 for external testing. Augmentation was applied to the training set (n = 2,117,000) to increase model robustness. Performance was evaluated by area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. Implant identification processing speed was calculated.The training and testing sets were drawn from statistically different populations of implants (P < .001). After 1,000 training epochs by the deep learning system, the system discriminated 8 implant models with a mean area under the receiver operating characteristic curve of 0.991, accuracy of 97.9%, sensitivity of 88.6%, and specificity of 98.9% in the external testing dataset of 588 anteroposterior radiographs. The software classified implants at a mean speed of 0.02 seconds per image.An AI-based software demonstrated excellent internal and external validation. Although continued surveillance is necessary with implant library expansion, this software represents responsible and meaningful clinical application of AI with immediate potential to globally scale and assist in preoperative planning prior to revision THA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
刚刚
CodeCraft应助小智采纳,获得10
1秒前
8R60d8应助Afterglow采纳,获得10
1秒前
perfect完成签到 ,获得积分10
2秒前
幽若宝宝应助就知道采纳,获得80
3秒前
许安华发布了新的文献求助10
4秒前
友好的友绿完成签到,获得积分10
5秒前
研究新人完成签到,获得积分10
7秒前
7秒前
dove完成签到,获得积分10
8秒前
mengloo完成签到,获得积分10
8秒前
Tom完成签到,获得积分10
9秒前
wuyou992完成签到,获得积分10
9秒前
9秒前
9秒前
杨琴完成签到,获得积分10
10秒前
研究新人发布了新的文献求助10
11秒前
zain完成签到 ,获得积分10
11秒前
丹丹子完成签到 ,获得积分10
12秒前
mengloo发布了新的文献求助10
12秒前
青衍应助leiiiiiiii采纳,获得10
12秒前
中午饭完成签到,获得积分10
12秒前
芝士拌麦粒完成签到 ,获得积分10
13秒前
务实的绝悟完成签到,获得积分10
13秒前
恐怖稽器人完成签到,获得积分10
13秒前
胖小羊完成签到 ,获得积分10
14秒前
雨辰完成签到,获得积分10
15秒前
月半小董完成签到,获得积分10
15秒前
执着念寒完成签到,获得积分20
16秒前
16秒前
特大包包完成签到,获得积分10
16秒前
青衍应助蜂鸟5156采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得20
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
时冬冬应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
18秒前
Satoru应助科研通管家采纳,获得10
18秒前
18秒前
王者归来发布了新的文献求助10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253246
求助须知:如何正确求助?哪些是违规求助? 2895752
关于积分的说明 8287872
捐赠科研通 2564639
什么是DOI,文献DOI怎么找? 1392493
科研通“疑难数据库(出版商)”最低求助积分说明 652220
邀请新用户注册赠送积分活动 629433