Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106864-106864 被引量:87
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
1秒前
如意完成签到,获得积分10
2秒前
所所应助美茬子采纳,获得10
2秒前
李健的小迷弟应助lin采纳,获得10
3秒前
Lilyzi发布了新的文献求助10
3秒前
surou发布了新的文献求助10
4秒前
Orange应助感动的银耳汤采纳,获得10
5秒前
5秒前
赘婿应助ikomae采纳,获得10
7秒前
7秒前
7秒前
大模型应助saikun采纳,获得10
8秒前
8秒前
dd完成签到,获得积分10
8秒前
9秒前
9秒前
一只西瓜茶完成签到,获得积分10
10秒前
2113完成签到,获得积分10
11秒前
12秒前
offshore完成签到 ,获得积分10
12秒前
Lilyzi完成签到,获得积分10
12秒前
12秒前
芒果发布了新的文献求助10
12秒前
不晚发布了新的文献求助10
12秒前
lililala关注了科研通微信公众号
13秒前
九九完成签到,获得积分10
14秒前
羊知鱼完成签到,获得积分10
15秒前
19秒前
某某完成签到 ,获得积分10
19秒前
魁梧的问雁应助花生壳采纳,获得10
20秒前
20秒前
23秒前
24秒前
NexusExplorer应助zz采纳,获得10
26秒前
29秒前
vent发布了新的文献求助10
29秒前
29秒前
无情的火完成签到,获得积分10
30秒前
30秒前
激动的山芙完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289467
求助须知:如何正确求助?哪些是违规求助? 2926438
关于积分的说明 8427229
捐赠科研通 2597679
什么是DOI,文献DOI怎么找? 1417284
科研通“疑难数据库(出版商)”最低求助积分说明 659669
邀请新用户注册赠送积分活动 642133