Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1397完成签到 ,获得积分10
1秒前
fanqiaqia发布了新的文献求助10
1秒前
orixero应助KK采纳,获得10
1秒前
隐形傲霜完成签到 ,获得积分10
1秒前
英俊的铭应助纪秋采纳,获得10
1秒前
月月鸟完成签到,获得积分10
2秒前
2秒前
nosay完成签到,获得积分10
2秒前
3秒前
Rollin完成签到,获得积分10
3秒前
Akim应助怕黑鑫采纳,获得10
4秒前
檀秀婷发布了新的文献求助10
4秒前
4秒前
4秒前
纯真忆秋完成签到,获得积分10
5秒前
罗小黑发布了新的文献求助10
5秒前
5秒前
bhfhq完成签到,获得积分10
6秒前
无语的夜山完成签到,获得积分20
6秒前
羞涩的西牛完成签到 ,获得积分10
7秒前
冷静的谷云完成签到,获得积分20
7秒前
xiaoE完成签到,获得积分10
7秒前
7秒前
双月完成签到,获得积分10
8秒前
yjq完成签到,获得积分10
9秒前
u2u2完成签到,获得积分10
9秒前
9秒前
Katrina完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
swb完成签到,获得积分10
10秒前
丘比特应助高贵的莫言采纳,获得10
11秒前
zzz完成签到,获得积分10
11秒前
ll完成签到 ,获得积分10
11秒前
12秒前
XDF完成签到 ,获得积分10
12秒前
12秒前
jiangdiwei发布了新的文献求助10
12秒前
Hesper完成签到 ,获得积分10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235264
求助须知:如何正确求助?哪些是违规求助? 4403733
关于积分的说明 13703838
捐赠科研通 4271112
什么是DOI,文献DOI怎么找? 2343888
邀请新用户注册赠送积分活动 1341076
关于科研通互助平台的介绍 1298572