Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助子铭采纳,获得10
刚刚
机灵的冷风完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
emgauemmeo发布了新的文献求助30
3秒前
SAINT发布了新的文献求助10
3秒前
坦率书竹完成签到,获得积分10
3秒前
张婷完成签到,获得积分10
3秒前
科研通AI2S应助Japrin采纳,获得10
4秒前
缥缈的星星完成签到,获得积分10
4秒前
倒头就睡完成签到,获得积分10
4秒前
5秒前
万事胜意完成签到 ,获得积分10
5秒前
orixero应助住在月亮隔壁采纳,获得10
5秒前
6秒前
黄方涛发布了新的文献求助10
6秒前
6秒前
快来拾糖完成签到 ,获得积分10
6秒前
情怀应助五月拾旧采纳,获得10
6秒前
7秒前
yanghuiying发布了新的文献求助30
7秒前
无理发布了新的文献求助10
7秒前
8秒前
汉堡包应助小螃蟹采纳,获得10
8秒前
Rae发布了新的文献求助10
8秒前
8秒前
Orange应助liuqingyun采纳,获得10
8秒前
咖喱发布了新的文献求助30
9秒前
鹿鹿完成签到 ,获得积分10
10秒前
陈泽宇完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
Nicole完成签到 ,获得积分10
10秒前
研友_yLpQrn完成签到,获得积分10
11秒前
小狗说好运来完成签到 ,获得积分10
11秒前
12秒前
13秒前
选波发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513281
求助须知:如何正确求助?哪些是违规求助? 4607602
关于积分的说明 14505891
捐赠科研通 4543161
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471343
关于科研通互助平台的介绍 1443372