Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1687发布了新的文献求助30
1秒前
桐桐应助漂亮的以冬采纳,获得10
1秒前
2秒前
丘比特应助Skuld采纳,获得10
3秒前
培乐多发布了新的文献求助10
3秒前
独孤阳光完成签到,获得积分10
3秒前
clara完成签到 ,获得积分10
4秒前
looklook完成签到,获得积分10
4秒前
思源应助无私醉蝶采纳,获得10
5秒前
6秒前
呆子发布了新的文献求助10
6秒前
诺澜啊完成签到,获得积分20
7秒前
8秒前
8秒前
顾矜应助梅天豪采纳,获得30
9秒前
9秒前
诺澜啊发布了新的文献求助10
10秒前
虚幻不弱完成签到 ,获得积分10
10秒前
刻苦鸭子完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
dddd发布了新的文献求助10
12秒前
风吹半夏完成签到,获得积分10
14秒前
14秒前
Ava应助wyg1994采纳,获得10
14秒前
Skuld发布了新的文献求助10
15秒前
小海豚发布了新的文献求助10
15秒前
15秒前
15秒前
李健的小迷弟应助zhq采纳,获得10
16秒前
玄辰发布了新的文献求助10
16秒前
16秒前
林登万发布了新的文献求助10
16秒前
16秒前
张靖发布了新的文献求助10
18秒前
谢巫完成签到,获得积分10
18秒前
快乐的菠萝完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921