Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助咩咩兔采纳,获得10
1秒前
FashionBoy应助culiucabbage采纳,获得10
1秒前
2秒前
2秒前
2秒前
orixero应助嘻嘻采纳,获得10
3秒前
3秒前
科目三应助健康的半仙采纳,获得10
3秒前
华仔应助健康的半仙采纳,获得10
3秒前
云纳应助健康的半仙采纳,获得10
3秒前
FashionBoy应助健康的半仙采纳,获得10
4秒前
爆米花应助健康的半仙采纳,获得10
4秒前
大个应助健康的半仙采纳,获得10
4秒前
领导范儿应助健康的半仙采纳,获得10
4秒前
4秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
7秒前
天真璎发布了新的文献求助10
7秒前
7秒前
失眠听南完成签到,获得积分10
7秒前
生生不息关注了科研通微信公众号
8秒前
顺利的蘑菇完成签到 ,获得积分10
8秒前
赘婿应助一个大西瓜采纳,获得10
9秒前
9秒前
凶狠的谷蓝完成签到,获得积分10
10秒前
赖娩完成签到 ,获得积分10
10秒前
众生平等完成签到,获得积分10
10秒前
10秒前
swayqur完成签到,获得积分10
11秒前
Alma发布了新的文献求助10
12秒前
王咚咚完成签到,获得积分20
12秒前
众生平等发布了新的文献求助10
13秒前
culiucabbage发布了新的文献求助10
14秒前
14秒前
RayHey发布了新的文献求助10
14秒前
lijiauyi1994发布了新的文献求助10
14秒前
花花完成签到 ,获得积分10
15秒前
丘比特应助黎明森采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527