Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助草莓养乐多采纳,获得10
1秒前
1秒前
1秒前
妙妙发布了新的文献求助10
2秒前
在水一方应助健忘的惜雪采纳,获得10
2秒前
3秒前
4秒前
4秒前
CipherSage应助菲菲采纳,获得10
4秒前
lemon发布了新的文献求助30
4秒前
杨先生发布了新的文献求助10
6秒前
6秒前
书书发布了新的文献求助10
7秒前
LL发布了新的文献求助10
8秒前
Jessica完成签到,获得积分10
8秒前
木子发布了新的文献求助10
8秒前
9秒前
XU博士完成签到,获得积分10
9秒前
9秒前
9秒前
ivy发布了新的文献求助10
10秒前
眯眯眼的妙之完成签到,获得积分10
11秒前
11秒前
吴糖完成签到,获得积分10
12秒前
12秒前
Dxtkdjdk发布了新的文献求助10
12秒前
13秒前
13秒前
五月既望完成签到,获得积分10
13秒前
AteeqBaloch发布了新的文献求助10
14秒前
yh发布了新的文献求助10
14秒前
15秒前
西因应助morry5007采纳,获得10
15秒前
15秒前
shaw完成签到,获得积分10
15秒前
yaoguozhikkk发布了新的文献求助10
15秒前
mingyinowo发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598595
求助须知:如何正确求助?哪些是违规求助? 4684033
关于积分的说明 14833389
捐赠科研通 4664115
什么是DOI,文献DOI怎么找? 2537300
邀请新用户注册赠送积分活动 1504886
关于科研通互助平台的介绍 1470591