Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning

堤防 泄漏(经济) 热成像 管道 恒虚警率 人工智能 计算机科学 红外线的 工程类 岩土工程 机械工程 光学 物理 宏观经济学 经济
作者
Renlian Zhou,Zhiping Wen,Huaizhi Su
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 85-104 被引量:14
标识
DOI:10.1016/j.isprsjprs.2022.07.009
摘要

Leakage erosion is one of the most harmful driving factors causing river embankment breaches, particularly in flood season. However, manual patrol is the main way to find river embankment leakage presently, which badly hinders disaster prevention. To realize the efficient detection and automatic identification of embankment leakage, for the first time the strategy of UAV carried passive infrared thermography combined with transfer learning is introduced herein as an innovative approach to ensure embankment safety. Especially, the problem of embankment leakage identification is transformed into image classification. The main research objects in this study are slope leakage and piping, two of the most dangerous causes of embankment failure. To obtain sufficient images for model training, an open-air simulation platform which can simulate the slope leakage and piping under the actual service conditions of river embankment is established. A total of more than 500 infrared thermography experiments are conducted on the leakage simulation platform and then an infrared image database containing more than 10,000 images which contain various thermal anomaly areas generated by 6 classes of embankment leakage is established. Using these images and AlexNet-based transfer learning method, an image classification model with excellent performance is trained. This model has a classification accuracy of 94.90%, a small leakage missed rate of 0.64%, and a small false alarm rate of 2.65% on the test set. Moreover, before model deployment, visualization techniques such as t-SNE and Grad-CAM are adopted to provide interior insight of the model to ensure that the objects of concern on which the model makes its classification decisions are reasonable. Finally, field tests demonstrated strong feasibility of UAV carried infrared thermography combined with this well-trained model, and revels that the proposed leakage detection and recognition approach has good applicability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不辣的完成签到 ,获得积分10
1秒前
lf66完成签到,获得积分10
1秒前
qifeng发布了新的文献求助10
2秒前
asd完成签到,获得积分10
3秒前
wintershoot发布了新的文献求助10
5秒前
芝芝发布了新的文献求助10
6秒前
小马甲应助浩西采纳,获得30
7秒前
稳重冰岚完成签到,获得积分10
9秒前
10秒前
mount发布了新的文献求助20
11秒前
17发布了新的文献求助10
12秒前
阿莫西林胶囊完成签到,获得积分10
13秒前
Jieao完成签到,获得积分10
14秒前
14秒前
TiAmo完成签到 ,获得积分10
15秒前
jellyfish应助MCCCCC_6采纳,获得10
17秒前
Jieao发布了新的文献求助20
18秒前
jundading发布了新的文献求助10
20秒前
23秒前
czz014完成签到,获得积分10
26秒前
27秒前
魔幻冷风完成签到,获得积分10
28秒前
Stanfuny完成签到,获得积分10
30秒前
万能图书馆应助毛豆爸爸采纳,获得10
31秒前
32秒前
阿飘应助纸芯采纳,获得10
33秒前
hashtag发布了新的文献求助10
33秒前
谨慎傲旋完成签到 ,获得积分10
33秒前
鳗鱼匕发布了新的文献求助10
36秒前
lant蓝天完成签到,获得积分10
37秒前
37秒前
37秒前
38秒前
Feng完成签到,获得积分10
38秒前
xzl完成签到 ,获得积分10
39秒前
研友_LXOWx8完成签到,获得积分10
40秒前
lant蓝天发布了新的文献求助10
41秒前
41秒前
儒雅秋白完成签到,获得积分10
42秒前
子车茗应助Feng采纳,获得10
42秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220962
求助须知:如何正确求助?哪些是违规求助? 2869695
关于积分的说明 8166823
捐赠科研通 2536420
什么是DOI,文献DOI怎么找? 1368852
科研通“疑难数据库(出版商)”最低求助积分说明 645267
邀请新用户注册赠送积分活动 618936