清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning

堤防 泄漏(经济) 热成像 管道 恒虚警率 人工智能 计算机科学 红外线的 工程类 岩土工程 机械工程 光学 物理 宏观经济学 经济
作者
Renlian Zhou,Zhiping Wen,Huaizhi Su
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 85-104 被引量:14
标识
DOI:10.1016/j.isprsjprs.2022.07.009
摘要

Leakage erosion is one of the most harmful driving factors causing river embankment breaches, particularly in flood season. However, manual patrol is the main way to find river embankment leakage presently, which badly hinders disaster prevention. To realize the efficient detection and automatic identification of embankment leakage, for the first time the strategy of UAV carried passive infrared thermography combined with transfer learning is introduced herein as an innovative approach to ensure embankment safety. Especially, the problem of embankment leakage identification is transformed into image classification. The main research objects in this study are slope leakage and piping, two of the most dangerous causes of embankment failure. To obtain sufficient images for model training, an open-air simulation platform which can simulate the slope leakage and piping under the actual service conditions of river embankment is established. A total of more than 500 infrared thermography experiments are conducted on the leakage simulation platform and then an infrared image database containing more than 10,000 images which contain various thermal anomaly areas generated by 6 classes of embankment leakage is established. Using these images and AlexNet-based transfer learning method, an image classification model with excellent performance is trained. This model has a classification accuracy of 94.90%, a small leakage missed rate of 0.64%, and a small false alarm rate of 2.65% on the test set. Moreover, before model deployment, visualization techniques such as t-SNE and Grad-CAM are adopted to provide interior insight of the model to ensure that the objects of concern on which the model makes its classification decisions are reasonable. Finally, field tests demonstrated strong feasibility of UAV carried infrared thermography combined with this well-trained model, and revels that the proposed leakage detection and recognition approach has good applicability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CUN完成签到,获得积分10
3秒前
猫猫i完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
23秒前
充电宝应助科研通管家采纳,获得10
37秒前
YY驳回了打打应助
55秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
白天亮完成签到,获得积分10
2分钟前
宇文非笑完成签到 ,获得积分10
2分钟前
2分钟前
游鱼完成签到,获得积分10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
传奇完成签到 ,获得积分10
2分钟前
2分钟前
什么也难不倒我完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
YY给YY的求助进行了留言
3分钟前
缓慢的忆枫完成签到,获得积分20
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
文献搬运工完成签到 ,获得积分10
4分钟前
GIA完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
陶世立完成签到 ,获得积分10
6分钟前
轻松的甜瓜完成签到,获得积分10
6分钟前
直率的笑翠完成签到 ,获得积分10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
nojego完成签到,获得积分10
6分钟前
光合作用完成签到,获得积分10
6分钟前
7分钟前
7分钟前
YY发布了新的文献求助30
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983