亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning

堤防 泄漏(经济) 热成像 管道 恒虚警率 人工智能 计算机科学 红外线的 工程类 岩土工程 机械工程 光学 物理 宏观经济学 经济
作者
Renlian Zhou,Zhiping Wen,Huaizhi Su
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 85-104 被引量:14
标识
DOI:10.1016/j.isprsjprs.2022.07.009
摘要

Leakage erosion is one of the most harmful driving factors causing river embankment breaches, particularly in flood season. However, manual patrol is the main way to find river embankment leakage presently, which badly hinders disaster prevention. To realize the efficient detection and automatic identification of embankment leakage, for the first time the strategy of UAV carried passive infrared thermography combined with transfer learning is introduced herein as an innovative approach to ensure embankment safety. Especially, the problem of embankment leakage identification is transformed into image classification. The main research objects in this study are slope leakage and piping, two of the most dangerous causes of embankment failure. To obtain sufficient images for model training, an open-air simulation platform which can simulate the slope leakage and piping under the actual service conditions of river embankment is established. A total of more than 500 infrared thermography experiments are conducted on the leakage simulation platform and then an infrared image database containing more than 10,000 images which contain various thermal anomaly areas generated by 6 classes of embankment leakage is established. Using these images and AlexNet-based transfer learning method, an image classification model with excellent performance is trained. This model has a classification accuracy of 94.90%, a small leakage missed rate of 0.64%, and a small false alarm rate of 2.65% on the test set. Moreover, before model deployment, visualization techniques such as t-SNE and Grad-CAM are adopted to provide interior insight of the model to ensure that the objects of concern on which the model makes its classification decisions are reasonable. Finally, field tests demonstrated strong feasibility of UAV carried infrared thermography combined with this well-trained model, and revels that the proposed leakage detection and recognition approach has good applicability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny完成签到 ,获得积分10
2秒前
李健应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
1234354346完成签到 ,获得积分10
14秒前
喜之郎果冻完成签到,获得积分10
28秒前
江姜酱先生完成签到,获得积分10
30秒前
谦让的西装完成签到 ,获得积分10
37秒前
扶光完成签到 ,获得积分10
44秒前
keyanbrant完成签到 ,获得积分10
44秒前
48秒前
千寻完成签到,获得积分10
49秒前
薄荷小新完成签到 ,获得积分10
53秒前
卡琳完成签到 ,获得积分10
1分钟前
1分钟前
芳芳发布了新的文献求助10
1分钟前
jinmuna完成签到,获得积分10
1分钟前
李健的小迷弟应助芳芳采纳,获得10
1分钟前
科研通AI2S应助头秃科研人采纳,获得10
1分钟前
大模型应助zzz采纳,获得10
1分钟前
cdercder应助头秃科研人采纳,获得20
1分钟前
单薄的咖啡完成签到 ,获得积分10
1分钟前
2分钟前
优雅柏柳发布了新的文献求助10
2分钟前
言辞完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228106
关于积分的说明 9778486
捐赠科研通 2938349
什么是DOI,文献DOI怎么找? 1609872
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990