Direct use of large-footprint lidar waveforms to estimate aboveground biomass

异速滴定 激光雷达 生物群落 树木异速生长 生物量(生态学) 环境科学 缩放比例 每年落叶的 胸径 遥感 生态学 地理 数学 生态系统 几何学 生物 生物量分配
作者
Wenge Ni‐Meister,Alejandro Rojas,Shihyan Lee
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113147-113147 被引量:12
标识
DOI:10.1016/j.rse.2022.113147
摘要

Many studies have established the strong connections between aboveground biomass and lidar height metrics; however, these relationships are site-specific. Field data required to derive these relationships are not readily available in many cases. We developed a model to estimate plot-level aboveground biomass density (AGBD) directly from large-footprint lidar waveform measurements. An individual tree-based aboveground biomass (AGB)-height allometric relationship was scaled up to the plot level using lidar-waveform sensed tree height and crown size distribution characteristics. The AGBD was estimated based on a waveform/foliage profile-weighted height-based allometric equation. The AGBD-height scaling exponent was then built on the allometric relationships of tree height with stem diameter and crown volume with tree height. Global vegetation structure data analysis demonstrated that one general model (scaling exponent ~ 1.6–1.8) works reasonably well across all global forest biomes except boreal forests (scaling exponent ~ 0.9). We applied the model to estimate aboveground biomass in two distinct geographic regions: temperate deciduous/conifer forests in the northeastern USA and a montane conifer forest in Sierra National Forest in California. Local vegetation structural data analysis leads to a consistent height scaling exponent for these two distinct biomes, slightly different from the global data analysis results. This model produced optimal AGBD estimates using the local height scaling exponent value. Adequate AGBD estimates with the general height scaling exponent value were also provided by our model. Our analysis suggests one general allometric relationship between plot-level AGBD and large-footprint lidar waveforms. Integrating local structure allometric relationships improve the predictive accuracy of the model. Our model outperformed the lidar height metrics-based approach for AGBD estimates and overcame the biomass underestimation problem using height metrics for high biomass regions. This model could potentially serve as a general and robust model for monitoring forest carbon stocks using large-footprint lidar waveform measurements such as the Global Ecosystem Dynamics Investigation (GEDI) mission at the continental and global scales. The model could be a framework for integrating a demography-based terrestrial ecosystem model and GEDI global mission measurements to improve global carbon stock and flux estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵花瓣完成签到,获得积分10
刚刚
161319141完成签到 ,获得积分10
刚刚
丰富的世界完成签到 ,获得积分10
刚刚
高兴英完成签到,获得积分10
刚刚
美好嘉熙完成签到,获得积分10
刚刚
1秒前
清浅发布了新的文献求助10
1秒前
无辜的傲安完成签到 ,获得积分10
1秒前
Jinji发布了新的文献求助200
1秒前
萍子完成签到,获得积分10
1秒前
Ll发布了新的文献求助10
1秒前
1秒前
dracovu完成签到,获得积分10
2秒前
ZTT发布了新的文献求助10
2秒前
3秒前
cocobear完成签到 ,获得积分10
3秒前
啤酒半斤完成签到,获得积分10
3秒前
Hey发布了新的文献求助10
3秒前
4秒前
牧云完成签到 ,获得积分10
4秒前
5秒前
5秒前
小二郎应助xhy采纳,获得10
5秒前
zhonghbush发布了新的文献求助10
5秒前
萍子发布了新的文献求助10
5秒前
lovesonic完成签到,获得积分10
5秒前
科研通AI5应助tyty采纳,获得10
5秒前
Orange应助路之遥兮采纳,获得10
5秒前
完美世界应助123采纳,获得30
6秒前
充电宝应助zengli采纳,获得10
6秒前
LiDaYang完成签到,获得积分10
6秒前
努力学习发布了新的文献求助10
6秒前
6秒前
7秒前
夏之星完成签到,获得积分20
7秒前
Grayball应助啤酒半斤采纳,获得10
7秒前
8秒前
123jjj完成签到,获得积分10
9秒前
自然发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672