Direct use of large-footprint lidar waveforms to estimate aboveground biomass

异速滴定 激光雷达 生物群落 树木异速生长 生物量(生态学) 环境科学 缩放比例 每年落叶的 胸径 遥感 生态学 地理 数学 生态系统 几何学 生物 生物量分配
作者
Wenge Ni‐Meister,Alejandro Rojas,Shihyan Lee
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113147-113147 被引量:25
标识
DOI:10.1016/j.rse.2022.113147
摘要

Many studies have established the strong connections between aboveground biomass and lidar height metrics; however, these relationships are site-specific. Field data required to derive these relationships are not readily available in many cases. We developed a model to estimate plot-level aboveground biomass density (AGBD) directly from large-footprint lidar waveform measurements. An individual tree-based aboveground biomass (AGB)-height allometric relationship was scaled up to the plot level using lidar-waveform sensed tree height and crown size distribution characteristics. The AGBD was estimated based on a waveform/foliage profile-weighted height-based allometric equation. The AGBD-height scaling exponent was then built on the allometric relationships of tree height with stem diameter and crown volume with tree height. Global vegetation structure data analysis demonstrated that one general model (scaling exponent ~ 1.6–1.8) works reasonably well across all global forest biomes except boreal forests (scaling exponent ~ 0.9). We applied the model to estimate aboveground biomass in two distinct geographic regions: temperate deciduous/conifer forests in the northeastern USA and a montane conifer forest in Sierra National Forest in California. Local vegetation structural data analysis leads to a consistent height scaling exponent for these two distinct biomes, slightly different from the global data analysis results. This model produced optimal AGBD estimates using the local height scaling exponent value. Adequate AGBD estimates with the general height scaling exponent value were also provided by our model. Our analysis suggests one general allometric relationship between plot-level AGBD and large-footprint lidar waveforms. Integrating local structure allometric relationships improve the predictive accuracy of the model. Our model outperformed the lidar height metrics-based approach for AGBD estimates and overcame the biomass underestimation problem using height metrics for high biomass regions. This model could potentially serve as a general and robust model for monitoring forest carbon stocks using large-footprint lidar waveform measurements such as the Global Ecosystem Dynamics Investigation (GEDI) mission at the continental and global scales. The model could be a framework for integrating a demography-based terrestrial ecosystem model and GEDI global mission measurements to improve global carbon stock and flux estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩发布了新的文献求助10
1秒前
1秒前
1秒前
嗯哼发布了新的文献求助10
1秒前
2秒前
暮色陈陈发布了新的文献求助10
2秒前
蓝天发布了新的文献求助10
2秒前
慕海象龟完成签到,获得积分10
2秒前
2秒前
kento应助太难啦采纳,获得50
3秒前
面包发布了新的文献求助10
3秒前
磷酸瞳发布了新的文献求助30
4秒前
慕青应助zhangnan采纳,获得10
4秒前
4秒前
852应助阿博采纳,获得10
4秒前
lucky发布了新的文献求助10
4秒前
jiangjiang完成签到,获得积分20
4秒前
cheng完成签到,获得积分10
4秒前
搞怪的幻巧完成签到,获得积分10
4秒前
科研通AI6.1应助白白白采纳,获得10
5秒前
孤独的书雁完成签到,获得积分10
5秒前
朱朱发布了新的文献求助10
6秒前
6秒前
看不懂完成签到,获得积分10
6秒前
科研通AI6.1应助蛋总采纳,获得30
6秒前
柴先生完成签到,获得积分10
7秒前
Magic发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Zhao完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
追寻依风发布了新的文献求助10
9秒前
qwp发布了新的文献求助10
9秒前
看看发布了新的文献求助10
10秒前
10秒前
眯眯眼的裙子完成签到,获得积分10
12秒前
Lucia完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933