亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Object detection from UAV thermal infrared images and videos using YOLO models

人工智能 目标检测 计算机视觉 计算机科学 卷积神经网络 过程(计算) 对象(语法) 深度学习 遥感 模式识别(心理学) 地理 操作系统
作者
Chenchen Jiang,Huazhong Ren,Xin Ye,Jinshun Zhu,Hui Zeng,Nan Yang,Min Sun,Xiang Ren,Hongtao Huo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102912-102912 被引量:187
标识
DOI:10.1016/j.jag.2022.102912
摘要

Object detection is one of the most crucial tasks in computer vision and remote sensing to identify specific categories of various objects in images. The unmanned aerial vehicle (UAV)-based thermal infrared (TIR) remote sensing multi-scenario images and videos are two important data sources in public security. However, their object detection process is still challenging because of the complicated scene information, coarse resolution compared with the visible videos and lack of public labelled datasets and training models. This study proposed a UAV TIR object detection framework for images and videos. The You Only Look Once (YOLO) models based on Convolutional Neural Network (CNN) architecture were designed to extract features from ground-based TIR images and videos, which were captured by Forward-looking Infrared (FLIR) cameras. The most effective algorithm was finally identified by evaluation metrics and then applied to detect objects on TIR videos from UAVs. Results showed that the highest mean average precision (mAP) of the person and car instances was 88.69% in the validating task. The fastest detection speed achieved 50 frames per second (FPS), and the smallest model size was observed in YOLOv5-s. In the application, the cross-detection performance on persons and cars in UAV TIR videos under a YOLOv5-s model was discussed in terms of the different UAVs’ observation angles and the effectiveness of the YOLO architecture was revealed. This study provides positive support for the qualitative and quantitative evaluation of objection detection from TIR images and videos using deep-learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
15秒前
26秒前
27秒前
31秒前
zhangdoc发布了新的文献求助10
31秒前
32秒前
37秒前
开放道天发布了新的文献求助10
37秒前
zhangdoc完成签到,获得积分20
39秒前
40秒前
Founder发布了新的文献求助10
44秒前
Founder完成签到,获得积分10
50秒前
51秒前
flyinthesky完成签到,获得积分10
58秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
Lee发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
菠萝发布了新的文献求助10
1分钟前
可靠的寒风完成签到,获得积分10
1分钟前
endure发布了新的文献求助10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
安详的从筠完成签到,获得积分10
1分钟前
1分钟前
Lucas应助忐忑的黄豆采纳,获得10
1分钟前
yueying完成签到,获得积分10
1分钟前
HH发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
fcycukvujblk发布了新的文献求助10
1分钟前
村长发布了新的文献求助10
1分钟前
时尚的萝发布了新的文献求助10
2分钟前
JJBOND发布了新的文献求助10
2分钟前
wanci应助时尚的萝采纳,获得10
2分钟前
2分钟前
2分钟前
Akim应助solitude采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664226
求助须知:如何正确求助?哪些是违规求助? 4859183
关于积分的说明 15107314
捐赠科研通 4822719
什么是DOI,文献DOI怎么找? 2581666
邀请新用户注册赠送积分活动 1535885
关于科研通互助平台的介绍 1494101