已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Object detection from UAV thermal infrared images and videos using YOLO models

人工智能 目标检测 计算机视觉 计算机科学 卷积神经网络 过程(计算) 对象(语法) 深度学习 遥感 模式识别(心理学) 地理 操作系统
作者
Chenchen Jiang,Huazhong Ren,Xin Ye,Jinshun Zhu,Hui Zeng,Nan Yang,Min Sun,Xiang Ren,Hongtao Huo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102912-102912 被引量:119
标识
DOI:10.1016/j.jag.2022.102912
摘要

Object detection is one of the most crucial tasks in computer vision and remote sensing to identify specific categories of various objects in images. The unmanned aerial vehicle (UAV)-based thermal infrared (TIR) remote sensing multi-scenario images and videos are two important data sources in public security. However, their object detection process is still challenging because of the complicated scene information, coarse resolution compared with the visible videos and lack of public labelled datasets and training models. This study proposed a UAV TIR object detection framework for images and videos. The You Only Look Once (YOLO) models based on Convolutional Neural Network (CNN) architecture were designed to extract features from ground-based TIR images and videos, which were captured by Forward-looking Infrared (FLIR) cameras. The most effective algorithm was finally identified by evaluation metrics and then applied to detect objects on TIR videos from UAVs. Results showed that the highest mean average precision (mAP) of the person and car instances was 88.69% in the validating task. The fastest detection speed achieved 50 frames per second (FPS), and the smallest model size was observed in YOLOv5-s. In the application, the cross-detection performance on persons and cars in UAV TIR videos under a YOLOv5-s model was discussed in terms of the different UAVs' observation angles and the effectiveness of the YOLO architecture was revealed. This study provides positive support for the qualitative and quantitative evaluation of objection detection from TIR images and videos using deep-learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟迟完成签到 ,获得积分10
刚刚
威武灵阳完成签到,获得积分10
刚刚
英俊的铭应助寒生采纳,获得10
刚刚
fufu完成签到,获得积分10
1秒前
xihuan发布了新的文献求助10
2秒前
赘婿应助mimi采纳,获得10
3秒前
上好佳发布了新的文献求助10
4秒前
xihuan完成签到,获得积分10
8秒前
9秒前
9秒前
空心菜ohh完成签到,获得积分10
11秒前
动听煎饼完成签到 ,获得积分10
11秒前
Leah完成签到 ,获得积分10
11秒前
CipherSage应助诗亭采纳,获得10
12秒前
nene发布了新的文献求助10
14秒前
mimi发布了新的文献求助10
15秒前
16秒前
kinsley应助Suraim采纳,获得10
17秒前
寒生完成签到,获得积分10
17秒前
乐观的尔琴完成签到,获得积分10
18秒前
20秒前
linkman发布了新的文献求助10
21秒前
22秒前
22秒前
深情安青应助小红帽采纳,获得10
23秒前
23秒前
汉堡包应助久日采纳,获得10
23秒前
寻梦发布了新的文献求助10
24秒前
25秒前
coconut发布了新的文献求助10
27秒前
29秒前
bianxxing发布了新的文献求助30
29秒前
善学以致用应助寻梦采纳,获得10
29秒前
李爱国应助张琳琳采纳,获得10
32秒前
归尘发布了新的文献求助30
34秒前
符小狮关注了科研通微信公众号
34秒前
35秒前
星辰大海应助狗子采纳,获得10
36秒前
王大橘完成签到 ,获得积分10
41秒前
洁白的故人完成签到 ,获得积分10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962973
求助须知:如何正确求助?哪些是违规求助? 3508922
关于积分的说明 11144066
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791701
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803583