Object detection from UAV thermal infrared images and videos using YOLO models

人工智能 目标检测 计算机视觉 计算机科学 卷积神经网络 过程(计算) 对象(语法) 深度学习 遥感 模式识别(心理学) 地理 操作系统
作者
Chenchen Jiang,Huazhong Ren,Xin Ye,Jinshun Zhu,Hui Zeng,Nan Yang,Min Sun,Xiang Ren,Hongtao Huo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102912-102912 被引量:83
标识
DOI:10.1016/j.jag.2022.102912
摘要

Object detection is one of the most crucial tasks in computer vision and remote sensing to identify specific categories of various objects in images. The unmanned aerial vehicle (UAV)-based thermal infrared (TIR) remote sensing multi-scenario images and videos are two important data sources in public security. However, their object detection process is still challenging because of the complicated scene information, coarse resolution compared with the visible videos and lack of public labelled datasets and training models. This study proposed a UAV TIR object detection framework for images and videos. The You Only Look Once (YOLO) models based on Convolutional Neural Network (CNN) architecture were designed to extract features from ground-based TIR images and videos, which were captured by Forward-looking Infrared (FLIR) cameras. The most effective algorithm was finally identified by evaluation metrics and then applied to detect objects on TIR videos from UAVs. Results showed that the highest mean average precision (mAP) of the person and car instances was 88.69% in the validating task. The fastest detection speed achieved 50 frames per second (FPS), and the smallest model size was observed in YOLOv5-s. In the application, the cross-detection performance on persons and cars in UAV TIR videos under a YOLOv5-s model was discussed in terms of the different UAVs’ observation angles and the effectiveness of the YOLO architecture was revealed. This study provides positive support for the qualitative and quantitative evaluation of objection detection from TIR images and videos using deep-learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjp完成签到,获得积分10
刚刚
Cai发布了新的文献求助10
刚刚
刚刚
Johnlian完成签到 ,获得积分10
刚刚
lmy完成签到,获得积分10
1秒前
tlx发布了新的文献求助10
2秒前
斯文墨镜完成签到,获得积分10
3秒前
剁椒鱼头完成签到 ,获得积分10
3秒前
ding应助尛破孩采纳,获得10
5秒前
小璐sunny完成签到,获得积分10
6秒前
6秒前
大黑狗完成签到,获得积分10
7秒前
Xu完成签到,获得积分10
8秒前
小北完成签到,获得积分10
9秒前
xjp完成签到,获得积分10
9秒前
小王完成签到,获得积分10
9秒前
科研通AI2S应助石文采纳,获得10
9秒前
ne发布了新的文献求助10
10秒前
木木完成签到 ,获得积分10
11秒前
zzzzzdz完成签到,获得积分10
11秒前
小白白白完成签到 ,获得积分10
11秒前
Kerwin应助寒冷的寻菱采纳,获得10
11秒前
11秒前
11秒前
12秒前
Ava应助hao采纳,获得10
12秒前
Maisie完成签到,获得积分10
12秒前
LT完成签到 ,获得积分10
14秒前
15秒前
小北发布了新的文献求助10
16秒前
16秒前
顺遂完成签到,获得积分10
16秒前
dzy1317发布了新的文献求助10
17秒前
尛破孩发布了新的文献求助10
17秒前
小韩完成签到,获得积分10
17秒前
情怀应助美满的砖头采纳,获得10
18秒前
kullace发布了新的文献求助10
19秒前
惜筠完成签到,获得积分10
20秒前
20秒前
snail01完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813576
关于积分的说明 7901041
捐赠科研通 2473140
什么是DOI,文献DOI怎么找? 1316672
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175