Object detection from UAV thermal infrared images and videos using YOLO models

人工智能 目标检测 计算机视觉 计算机科学 卷积神经网络 过程(计算) 对象(语法) 深度学习 遥感 模式识别(心理学) 地理 操作系统
作者
Chenchen Jiang,Huazhong Ren,Xin Ye,Jinshun Zhu,Hui Zeng,Nan Yang,Min Sun,Xiang Ren,Hongtao Huo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102912-102912 被引量:119
标识
DOI:10.1016/j.jag.2022.102912
摘要

Object detection is one of the most crucial tasks in computer vision and remote sensing to identify specific categories of various objects in images. The unmanned aerial vehicle (UAV)-based thermal infrared (TIR) remote sensing multi-scenario images and videos are two important data sources in public security. However, their object detection process is still challenging because of the complicated scene information, coarse resolution compared with the visible videos and lack of public labelled datasets and training models. This study proposed a UAV TIR object detection framework for images and videos. The You Only Look Once (YOLO) models based on Convolutional Neural Network (CNN) architecture were designed to extract features from ground-based TIR images and videos, which were captured by Forward-looking Infrared (FLIR) cameras. The most effective algorithm was finally identified by evaluation metrics and then applied to detect objects on TIR videos from UAVs. Results showed that the highest mean average precision (mAP) of the person and car instances was 88.69% in the validating task. The fastest detection speed achieved 50 frames per second (FPS), and the smallest model size was observed in YOLOv5-s. In the application, the cross-detection performance on persons and cars in UAV TIR videos under a YOLOv5-s model was discussed in terms of the different UAVs' observation angles and the effectiveness of the YOLO architecture was revealed. This study provides positive support for the qualitative and quantitative evaluation of objection detection from TIR images and videos using deep-learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kay76完成签到,获得积分10
1秒前
WeiSONG完成签到,获得积分10
2秒前
三七二一完成签到,获得积分10
3秒前
科研大佬的路上完成签到,获得积分10
3秒前
4秒前
6昂完成签到 ,获得积分10
4秒前
辛勤如柏完成签到,获得积分10
5秒前
wzbc完成签到,获得积分10
5秒前
上下完成签到 ,获得积分10
6秒前
晴天完成签到,获得积分10
6秒前
auc完成签到,获得积分10
7秒前
海孩子完成签到,获得积分10
7秒前
那时花开应助清眸采纳,获得10
8秒前
Lucas应助追寻月饼采纳,获得10
8秒前
十月天秤完成签到,获得积分10
8秒前
iNk应助一一采纳,获得10
9秒前
瓦尔迪完成签到,获得积分10
10秒前
chenzhuod完成签到,获得积分10
10秒前
Freelover完成签到,获得积分10
11秒前
山鲁佐德完成签到,获得积分20
11秒前
坦率问枫完成签到,获得积分10
11秒前
椰汁味完成签到,获得积分10
12秒前
AdventureChen完成签到 ,获得积分10
12秒前
过时的广山完成签到 ,获得积分10
12秒前
13秒前
淡然一德完成签到,获得积分10
14秒前
铮铮完成签到,获得积分10
14秒前
打打应助小奥雄采纳,获得10
14秒前
Sunshine完成签到,获得积分10
15秒前
15秒前
paradise完成签到,获得积分20
15秒前
踏实采波完成签到,获得积分10
16秒前
罗丽琴llq1995完成签到 ,获得积分10
17秒前
格子完成签到,获得积分10
18秒前
拾一完成签到,获得积分10
18秒前
ssss完成签到,获得积分10
19秒前
lmq完成签到 ,获得积分10
19秒前
江三村完成签到 ,获得积分0
20秒前
牛马完成签到,获得积分10
20秒前
伯爵完成签到 ,获得积分0
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330