A Knowledge Optimization-Driven Network With Normalizer-Free Group ResNet Prior for Remote Sensing Image Pan-Sharpening

多光谱图像 锐化 全色胶片 计算机科学 归一化差异植被指数 遥感 图像分辨率 人工智能 模式识别(心理学) 计算机视觉 地理 叶面积指数 生态学 生物
作者
Jiang He,Qiangqiang Yuan,Jie Li,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2022.3186916
摘要

Multispectral images play a crucial role in environmental monitoring or ecological analysis for their large scope, quick acquisition, and big data. With the rapid development of technology and increasing demand, very high-resolution multispectral images have attracted a lot of attention these days. However, due to sensor equipment and the imaging environment, the spatial resolution of multispectral images is always restricted. With the help of panchromatic images, pan-sharpening is a very important technique to enhance the spatial details of multispectral images. In this study, we proposed a knowledge optimization-driven pan-sharpening network with normalizer-free group ResNet prior, called PNXnet, which is unfolded from a physical knowledge optimization-driven variational model. We solved the memory overhead brought by the traditional ResNet relying on batch normalization. Results on four sensors show that high quantitative indexes and natural visual effects have verified the reliability of PNXnet. Focusing on the NIR band where spatial details are hard to be injected, we compared the Normalized Difference Vegetation Index (NDVI) generated from the fused results, the estimated NDVI shows a high consistency to the ground truth with R2 above 0.91. Besides, we also compared the model generation. Furthermore, low model complexity and quicker computational speed make the daily application of PNXnet possible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助震震采纳,获得10
1秒前
xs发布了新的文献求助10
2秒前
2秒前
芝士酱完成签到,获得积分10
3秒前
张11发布了新的文献求助10
3秒前
4秒前
邓佳鑫Alan应助ZZQ采纳,获得10
5秒前
6秒前
ZhouXB完成签到,获得积分10
7秒前
大宝剑2号完成签到 ,获得积分10
8秒前
李健应助锅锅采纳,获得10
8秒前
9秒前
9秒前
9秒前
小猪发布了新的文献求助10
9秒前
呆萌的早晨完成签到,获得积分10
9秒前
科研通AI6应助超级佳倍采纳,获得10
10秒前
12秒前
丘比特应助文官采纳,获得10
12秒前
小小应助will采纳,获得10
12秒前
希望天下0贩的0应助ss采纳,获得10
12秒前
Dr_Zhang完成签到,获得积分10
13秒前
含蓄的海完成签到,获得积分10
13秒前
仁爱的梦曼完成签到 ,获得积分10
13秒前
风趣烤鸡发布了新的文献求助10
14秒前
haizz完成签到,获得积分10
15秒前
Orange应助yang采纳,获得10
16秒前
16秒前
香香发布了新的文献求助10
17秒前
17秒前
共享精神应助复杂梦安采纳,获得10
18秒前
18秒前
18秒前
搜集达人应助xio采纳,获得10
19秒前
wzf完成签到 ,获得积分10
19秒前
科研通AI6应助Logan采纳,获得10
19秒前
别当真发布了新的文献求助10
20秒前
20秒前
锦慜发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646