A Knowledge Optimization-Driven Network With Normalizer-Free Group ResNet Prior for Remote Sensing Image Pan-Sharpening

多光谱图像 锐化 全色胶片 计算机科学 归一化差异植被指数 遥感 图像分辨率 人工智能 模式识别(心理学) 计算机视觉 地理 叶面积指数 生态学 生物
作者
Jiang He,Qiangqiang Yuan,Jie Li,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2022.3186916
摘要

Multispectral images play a crucial role in environmental monitoring or ecological analysis for their large scope, quick acquisition, and big data. With the rapid development of technology and increasing demand, very high-resolution multispectral images have attracted a lot of attention these days. However, due to sensor equipment and the imaging environment, the spatial resolution of multispectral images is always restricted. With the help of panchromatic images, pan-sharpening is a very important technique to enhance the spatial details of multispectral images. In this study, we proposed a knowledge optimization-driven pan-sharpening network with normalizer-free group ResNet prior, called PNXnet, which is unfolded from a physical knowledge optimization-driven variational model. We solved the memory overhead brought by the traditional ResNet relying on batch normalization. Results on four sensors show that high quantitative indexes and natural visual effects have verified the reliability of PNXnet. Focusing on the NIR band where spatial details are hard to be injected, we compared the Normalized Difference Vegetation Index (NDVI) generated from the fused results, the estimated NDVI shows a high consistency to the ground truth with R2 above 0.91. Besides, we also compared the model generation. Furthermore, low model complexity and quicker computational speed make the daily application of PNXnet possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朔月发布了新的文献求助10
1秒前
duankaidi关注了科研通微信公众号
1秒前
炙热的小刺猬完成签到,获得积分10
1秒前
LIU230907完成签到,获得积分10
1秒前
Akim应助李牧采纳,获得10
1秒前
福瑞灯完成签到,获得积分10
2秒前
研友_VZG7GZ应助枣子枣子枣采纳,获得10
2秒前
2秒前
粗心的浩然关注了科研通微信公众号
2秒前
2秒前
2秒前
4秒前
4秒前
5秒前
从心发布了新的文献求助10
5秒前
共享精神应助就吃汉堡采纳,获得10
5秒前
yl发布了新的文献求助10
5秒前
Hello应助爬不起来采纳,获得10
6秒前
婉腾完成签到,获得积分10
6秒前
7秒前
逗逗完成签到,获得积分10
8秒前
now发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
xzy998发布了新的文献求助30
9秒前
王航完成签到,获得积分10
9秒前
9秒前
10秒前
史书完成签到,获得积分10
10秒前
golden发布了新的文献求助10
11秒前
11秒前
虚幻沛菡发布了新的文献求助10
12秒前
trans发布了新的文献求助20
12秒前
小木子发布了新的文献求助10
13秒前
13秒前
彪壮的草莓关注了科研通微信公众号
14秒前
Hanna0223关注了科研通微信公众号
14秒前
lione完成签到,获得积分10
15秒前
念初发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835