多光谱图像
锐化
全色胶片
计算机科学
归一化差异植被指数
遥感
图像分辨率
人工智能
模式识别(心理学)
计算机视觉
地理
叶面积指数
生态学
生物
作者
Jiang He,Qiangqiang Yuan,Jie Li,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-16
被引量:1
标识
DOI:10.1109/tgrs.2022.3186916
摘要
Multispectral images play a crucial role in environmental monitoring or ecological analysis for their large scope, quick acquisition, and big data. With the rapid development of technology and increasing demand, very high-resolution multispectral images have attracted a lot of attention these days. However, due to sensor equipment and the imaging environment, the spatial resolution of multispectral images is always restricted. With the help of panchromatic images, pan-sharpening is a very important technique to enhance the spatial details of multispectral images. In this study, we proposed a knowledge optimization-driven pan-sharpening network with normalizer-free group ResNet prior, called PNXnet, which is unfolded from a physical knowledge optimization-driven variational model. We solved the memory overhead brought by the traditional ResNet relying on batch normalization. Results on four sensors show that high quantitative indexes and natural visual effects have verified the reliability of PNXnet. Focusing on the NIR band where spatial details are hard to be injected, we compared the Normalized Difference Vegetation Index (NDVI) generated from the fused results, the estimated NDVI shows a high consistency to the ground truth with R2 above 0.91. Besides, we also compared the model generation. Furthermore, low model complexity and quicker computational speed make the daily application of PNXnet possible.
科研通智能强力驱动
Strongly Powered by AbleSci AI