A Knowledge Optimization-Driven Network With Normalizer-Free Group ResNet Prior for Remote Sensing Image Pan-Sharpening

多光谱图像 锐化 全色胶片 计算机科学 归一化差异植被指数 遥感 图像分辨率 人工智能 模式识别(心理学) 计算机视觉 地理 叶面积指数 生态学 生物
作者
Jiang He,Qiangqiang Yuan,Jie Li,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2022.3186916
摘要

Multispectral images play a crucial role in environmental monitoring or ecological analysis for their large scope, quick acquisition, and big data. With the rapid development of technology and increasing demand, very high-resolution multispectral images have attracted a lot of attention these days. However, due to sensor equipment and the imaging environment, the spatial resolution of multispectral images is always restricted. With the help of panchromatic images, pan-sharpening is a very important technique to enhance the spatial details of multispectral images. In this study, we proposed a knowledge optimization-driven pan-sharpening network with normalizer-free group ResNet prior, called PNXnet, which is unfolded from a physical knowledge optimization-driven variational model. We solved the memory overhead brought by the traditional ResNet relying on batch normalization. Results on four sensors show that high quantitative indexes and natural visual effects have verified the reliability of PNXnet. Focusing on the NIR band where spatial details are hard to be injected, we compared the Normalized Difference Vegetation Index (NDVI) generated from the fused results, the estimated NDVI shows a high consistency to the ground truth with R2 above 0.91. Besides, we also compared the model generation. Furthermore, low model complexity and quicker computational speed make the daily application of PNXnet possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyx完成签到 ,获得积分0
刚刚
Mado完成签到,获得积分10
刚刚
乌漆嘛黑发布了新的文献求助10
1秒前
李爱国应助学习通采纳,获得10
1秒前
华仔应助aaa采纳,获得10
1秒前
wangs发布了新的文献求助10
1秒前
2秒前
wsy完成签到,获得积分10
2秒前
wxy完成签到,获得积分10
2秒前
123456完成签到,获得积分10
2秒前
多喝开开完成签到,获得积分20
3秒前
3秒前
xwq发布了新的文献求助10
3秒前
白沙叶完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
旺旺小小酥完成签到,获得积分10
5秒前
5秒前
高高发布了新的文献求助10
6秒前
搞怪的猎豹关注了科研通微信公众号
6秒前
6秒前
aryou完成签到,获得积分10
6秒前
lifenghou完成签到 ,获得积分10
7秒前
Wrui1217发布了新的文献求助10
7秒前
Binbin完成签到 ,获得积分10
7秒前
许锦程完成签到,获得积分10
8秒前
叮咚发布了新的文献求助10
8秒前
9秒前
心海发布了新的文献求助10
10秒前
Y.J发布了新的文献求助10
11秒前
hoijuon应助汪洋采纳,获得10
12秒前
果实发布了新的文献求助10
12秒前
殷勤的可兰完成签到,获得积分10
13秒前
谢海亮完成签到,获得积分20
13秒前
15秒前
李健的小迷弟应助Dr.Sun采纳,获得10
16秒前
半城微凉应助无心的婴采纳,获得10
16秒前
16秒前
xwq完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149