Defect-suppressed submillimeter-scale WS2 single crystals with high photoluminescence quantum yields by alternate-growth-etching CVD

光致发光 单层 产量(工程) 材料科学 蚀刻(微加工) 化学气相沉积 光电子学 Crystal(编程语言) 增长率 单晶 纳米技术 化学工程 结晶学 化学 复合材料 图层(电子) 几何学 数学 计算机科学 工程类 程序设计语言
作者
Xin‐Hui Xing,Yanmei Zhang,Jiamei Chen,Maolin Chen,Xin Wei,Mengfan Ding,Youzhe Bao,Weizhen Liu,Haiyang Xu,Yichun Liu
出处
期刊:Materials horizons [The Royal Society of Chemistry]
卷期号:9 (9): 2416-2424 被引量:3
标识
DOI:10.1039/d2mh00721e
摘要

Defects, such as uncontrollable vacancies, will intensively degrade the material properties and device performance of CVD-grown transition metal dichalcogenides (TMDs). Although vacancies can be repaired by some post-processing measures, these treatments are usually time-consuming, complicated and may introduce uncontrollable chemical contaminants into TMDs. How to efficiently suppress the uncontrollable defects during CVD growth and acquire intrinsic high-quality CVD-grown TMDs without any after-treatment remains a critical challenge, and has not yet been well resolved. Here, an alternate-growth-etching (AGE) CVD method was demonstrated to fabricate defect-suppressed submillimeter-scale monolayer WS2 single crystals. Compared with normal CVD, the grain size of the as-grown WS2 can be enlarged by 4-5 times (∼520 μm) and the growth rate of ∼14.4 μm min-1 is also at a high level compared to reported results. Moreover, AGE-CVD can efficiently suppress atomic vacancies in WS2. In every growth-etching cycle, the etching of WS2 occurs preferentially at the defective sites, which will be healed at the following growth stage. As a result, WS2 monolayers obtained by AGE-CVD possess higher crystal quality, carrier mobility (8.3 cm2 V-1 s-1) and PL quantum yield (QY, 52.6%) than those by normal CVD. In particular, such a PL QY is the highest value ever reported for in situ CVD-grown TMDs without any after-treatment, and is even comparable to the values of mechanically exfoliated samples. This AGE-CVD method is also appropriate for the synthesis of other high-quality TMD single crystals on a large-scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Janice发布了新的文献求助10
1秒前
2秒前
老迟到的钢铁侠完成签到,获得积分10
7秒前
涂江渝发布了新的文献求助10
9秒前
繁荣的代秋完成签到 ,获得积分10
10秒前
at发布了新的文献求助10
10秒前
16秒前
小程同学发布了新的文献求助10
19秒前
椒盐丸子发布了新的文献求助10
21秒前
聪慧语山完成签到 ,获得积分10
22秒前
落后昊焱发布了新的文献求助10
23秒前
23秒前
JR完成签到,获得积分10
24秒前
笨笨友安完成签到,获得积分10
24秒前
Jasper应助Cell采纳,获得10
24秒前
yellow完成签到,获得积分10
26秒前
27秒前
涂江渝完成签到,获得积分10
27秒前
28秒前
30秒前
快乐小子发布了新的文献求助10
30秒前
CipherSage应助xinxin采纳,获得10
31秒前
科研通AI2S应助YGYANG采纳,获得10
31秒前
嗯哼应助FTN采纳,获得20
32秒前
TuT88完成签到,获得积分10
34秒前
淇淇发布了新的文献求助20
34秒前
成成完成签到,获得积分0
38秒前
38秒前
健忘的沛蓝完成签到 ,获得积分10
38秒前
39秒前
无语的棉花糖完成签到,获得积分10
41秒前
43秒前
魏凌飞完成签到,获得积分10
43秒前
Cell发布了新的文献求助10
43秒前
JOY完成签到 ,获得积分10
44秒前
gujianhua完成签到,获得积分10
45秒前
带头大哥应助Valverde15采纳,获得100
45秒前
llg关闭了llg文献求助
46秒前
司空致远发布了新的文献求助10
46秒前
白白白发布了新的文献求助50
47秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343275
求助须知:如何正确求助?哪些是违规求助? 2970351
关于积分的说明 8643622
捐赠科研通 2650367
什么是DOI,文献DOI怎么找? 1451260
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661460