A Review of Millimeter Wave Device-Based Localization and Device-Free Sensing Technologies and Applications

计算机科学 钥匙(锁) 雷达 国家(计算机科学) 嵌入式系统 实时计算 电信 算法 计算机安全
作者
Anish Shastri,Neharika Valecha,Enver Bashirov,Harsh Tataria,Michael Lentmaier,Fredrik Tufvesson,Michele Rossi,Paolo Casari
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 1708-1749 被引量:66
标识
DOI:10.1109/comst.2022.3177305
摘要

The commercial availability of low-cost millimeterwave (mmWave) communication and radar devices is starting to improve the adoption of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifthgeneration (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We overview key concepts about mmWave signal propagation and system design, detailing approaches, algorithms and applications for mmWave localization and sensing. Several dimensions are considered, including the main objectives, techniques, and performance of each work, whether they reached an implementation stage, and which hardware platforms or software tools were used. We analyze theoretical (including signal processing and machine learning), technological, and implementation (hardware and prototyping) aspects, exposing under-performing or missing techniques and items towards enabling a highly effective sensing of human parameters, such as position, movement, activity and vital signs. Among many interesting findings, we observe that device-based localization systems would greatly benefit from commercial-grade hardware that exposes channel state information, as well as from a better integration between standardcompliant mmWave initial access and localization algorithms, especially with multiple access points (APs). Moreover, more advanced algorithms requiring zero-initial knowledge of the environment would greatly help improve the adoption of mmWave simultaneous localization and mapping (SLAM). Machine learning (ML)-based algorithms are gaining momentum, but still require the collection of extensive training datasets, and do not yet generalize to any indoor environment, limiting their applicability. Device-free (i.e., radar-based) sensing systems still have to be improved in terms of: improved accuracy in the detection of vital signs (respiration and heart rate) and enhanced robustness/generalization capabilities across different environments; moreover, improved support is needed for the tracking of multiple users, and for the automatic creation of radar networks to enable largescale sensing applications. Finally, integrated systems performing joint communications and sensing are still in their infancy: theoretical and practical advancements are required to add sensing functionalities to mmWave-based channel access protocols based on orthogonal frequency-division multiplexing (OFDM) and multi-antenna technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助潇潇微雨采纳,获得10
刚刚
停停走走发布了新的文献求助10
刚刚
1秒前
栗子鱼完成签到,获得积分10
2秒前
saber_lancer发布了新的文献求助10
2秒前
滴答完成签到,获得积分10
2秒前
小王完成签到 ,获得积分10
2秒前
李健的粉丝团团长应助YLT采纳,获得10
2秒前
小景发布了新的文献求助10
3秒前
顺利秋灵发布了新的文献求助10
3秒前
3秒前
英姑应助停停走走采纳,获得10
4秒前
快乐小蕊发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
chromium22完成签到,获得积分10
6秒前
6秒前
7秒前
缥缈蘑菇完成签到,获得积分10
7秒前
钢钢完成签到,获得积分10
8秒前
张耀文发布了新的文献求助50
8秒前
子车茗应助牛马小羊采纳,获得30
9秒前
欣喜的发夹完成签到,获得积分10
9秒前
俏皮丸子发布了新的文献求助10
9秒前
9秒前
苏山关注了科研通微信公众号
10秒前
jsinm-thyroid完成签到 ,获得积分10
10秒前
研友_8DAv0L发布了新的文献求助30
10秒前
敏感跳跳糖完成签到,获得积分10
10秒前
en发布了新的文献求助10
11秒前
谦让友绿发布了新的文献求助10
11秒前
深情安青应助ZHIXIANGWENG采纳,获得10
11秒前
丘比特应助ZHIXIANGWENG采纳,获得10
11秒前
11秒前
搜集达人应助ZHIXIANGWENG采纳,获得10
11秒前
星辰大海应助ZHIXIANGWENG采纳,获得10
11秒前
大个应助ZHIXIANGWENG采纳,获得10
12秒前
12秒前
斯文败类应助ZHIXIANGWENG采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461762
求助须知:如何正确求助?哪些是违规求助? 3055433
关于积分的说明 9047944
捐赠科研通 2745204
什么是DOI,文献DOI怎么找? 1506061
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695450