Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production

计算机科学 相(物质) 人工智能 人工神经网络 一般化 信号(编程语言) 数字信号处理 计算机视觉 计算机硬件 数学 物理 数学分析 程序设计语言 量子力学
作者
Jing Zhang,Bin Luo,Fuqian Li,Xingman Niu,Qican Zhang,Yajun Wang,Xiangcheng Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 2039-2048 被引量:22
标识
DOI:10.1109/tii.2022.3185660
摘要

Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used techniques heavily rely on multiple exposures for optimal fusion but do not fit to high-efficiency monitoring. To alleviate this reliance, we propose a novel single-exposure method called deep sinusoidal prior (DSP) for damaged phase recovery of highly reflective surfaces. Specifically, the sinusoidal hypothesis is instilled into an untrained deep neural network (DNN) as two-stream information, in order to bypass the problem of brightness enhancement. Utilizing elaborately designed loss functions, this approach enables us to restore the accurate phase encoding by fitting the DNN to two-stream sinusoidal priors. Experimental results demonstrate that the proposed DSP method has superior performances on damaged phase recovery requiring no training samples. For instance, measuring a standard workpiece, absolute errors of the DSP method have been decreased substantially (81.69% and 59.49%) compared with the direct measurement and achieved similar accuracy (0.0754 versus 0.0744 mm) compared with the reference. Most strikingly, the proposed method, for the first time, demonstrates a new perspective of recovering the reliable phase from a degraded one itself, contributing to the superior generalization capability insensitive to fringe frequencies, imaging settings, and variant scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小草莓发布了新的文献求助10
刚刚
1秒前
Eliii完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
小林不熬夜完成签到 ,获得积分10
2秒前
3秒前
5秒前
妮妮发布了新的文献求助10
5秒前
5秒前
卢佳伟发布了新的文献求助10
6秒前
xjl完成签到,获得积分10
7秒前
王梦瑶发布了新的文献求助20
7秒前
千日粉发布了新的文献求助10
8秒前
8秒前
9秒前
小二郎应助安然采纳,获得10
9秒前
秋葵拌饭发布了新的文献求助10
9秒前
10秒前
ceeray23应助看文章的小余采纳,获得20
11秒前
marska完成签到,获得积分10
12秒前
12秒前
按住心动发布了新的文献求助10
12秒前
13秒前
feifei发布了新的文献求助10
14秒前
14秒前
精明匪发布了新的文献求助10
15秒前
Jana应助Stone采纳,获得30
15秒前
萝卜花1968发布了新的文献求助10
16秒前
Suan发布了新的文献求助10
17秒前
19秒前
20秒前
王路飞发布了新的文献求助10
20秒前
Jeremy完成签到,获得积分20
21秒前
言辞完成签到,获得积分10
21秒前
22秒前
23秒前
LM879发布了新的文献求助10
24秒前
科研通AI2S应助二牛采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320