微塑料
林地
草原
环境科学
果园
丰度(生态学)
污染
土地利用
地理
生态学
生物
作者
Ya Zhang,Kang Wang,Weizhi Chen,Yong Ba,Kifayatullah Khan,Wei Chen,Chen Tu,Chang-Er Chen,Li Xu
标识
DOI:10.1016/j.scitotenv.2022.157598
摘要
Microplastic pollution in the soil environment has gathered widespread attention. However, little is known about the effects of land use and landscape patterns on the occurrence and distribution of microplastics in the soil. Herein, the microplastic pollution in different land uses (facility farmland, traditional farmland, orchard, grassland, and woodland) in Yuanmou County, Yunnan Province was investigated. The results showed that the abundance of microplastic ranged from 50.000 to 3450.0 items·kg-1, with an average abundance of 595.00 ± 740.00 items·kg-1 and a median of 375.00 items·kg-1. Microplastics were found to primarily be green-coloured (28.4 %), fragment (72.7 %) in shape, <1 mm (75.7 %) in size, and composed of polypropylene (51.4 %). There were significant differences in the abundance and characteristics of the microplastics between different land use types. Microplastic abundance in facility farmlands, traditional farmlands, and orchard lands was significantly higher than that of grasslands and woodlands (p < 0.05). The main shape of the microplastics in facility farmlands, traditional farmlands, and orchards was fragments and it was fibers in grasslands and woodlands. The median particle size of microplastics in facility farmlands (539.50 μm) and traditional farmlands (574.00 μm), was smaller than those in the orchard (737.60 μm), grasslands (697.60 μm), and woodlands (1239.4 μm). Discrepancies among different land uses may be due to various reasons, such as different pollution sources and the weathering degree of microplastics. The results of the redundancy analysis showed that the microplastic abundance was negatively correlated with the largest patch index. It also showed that microplastic pollution was closely related to human activities. This study provides an important basis for further research on microplastic ecosystem risks that are associated with land use and provides a data basis for formulating effective prevention and control strategies and measures to mitigate soil microplastic pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI