Identifying potential signatures for atherosclerosis in the context of predictive, preventive, and personalized medicine using integrative bioinformatics approaches and machine-learning strategies

背景(考古学) 医学 生物信息学 精密医学 个性化医疗 组学 生物 病理 古生物学
作者
Jinling Xu,Hui Zhou,Yangyang Cheng,Guangda Xiang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 433-449 被引量:35
标识
DOI:10.1007/s13167-022-00289-y
摘要

Atherosclerosis is a major contributor to morbidity and mortality worldwide. Although several molecular markers associated with atherosclerosis have been developed in recent years, the lack of robust evidence hinders their clinical applications. For these reasons, identification of novel and robust biomarkers will directly contribute to atherosclerosis management in the context of predictive, preventive, and personalized medicine (PPPM). This integrative analysis aimed to identify critical genetic markers of atherosclerosis and further explore the underlying molecular immune mechanism attributing to the altered biomarkers. Gene Expression Omnibus (GEO) series datasets were downloaded from GEO. Firstly, differential expression analysis and functional analysis were conducted. Multiple machine-learning strategies were then employed to screen and determine key genetic markers, and receiver operating characteristic (ROC) analysis was used to assess diagnostic value. Subsequently, cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) and a single-cell RNA sequencing (scRNA-seq) data were performed to explore relationships between signatures and immune cells. Lastly, we validated the biomarkers’ expression in human and mice experiments. A total of 611 overlapping differentially expressed genes (DEGs) included 361 upregulated and 250 downregulated genes. Based on the enrichment analysis, DEGs were mapped in terms related to immune cell involvements, immune activating process, and inflaming signals. After using multiple machine-learning strategies, dehydrogenase/reductase 9 (DHRS9) and protein tyrosine phosphatase receptor type J (PTPRJ) were identified as critical biomarkers and presented their high diagnostic accuracy for atherosclerosis. From CIBERSORT analysis, both DHRS9 and PTPRJ were significantly related to diverse immune cells, such as macrophages and mast cells. Further scRNA-seq analysis indicated DHRS9 was specifically upregulated in macrophages of atherosclerotic lesions, which was confirmed in atherosclerotic patients and mice. Our findings are the first to report the involvement of DHRS9 in the atherogenesis, and the proatherogenic effect of DHRS9 is mediated by immune mechanism. In addition, we confirm that DHRS9 is localized in macrophages within atherosclerotic plaques. Therefore, upregulated DHRS9 could be a novel potential target for the future predictive diagnostics, targeted prevention, patient stratification, and personalization of medical services in atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
briefyark完成签到,获得积分10
1秒前
1秒前
柠檬不萌发布了新的文献求助20
2秒前
2秒前
Hello应助Jerry采纳,获得10
2秒前
faustss完成签到,获得积分10
2秒前
li发布了新的文献求助10
2秒前
2秒前
kongzy完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
科目三应助YBR采纳,获得10
4秒前
miumiuka完成签到,获得积分10
4秒前
momo123发布了新的文献求助10
4秒前
4秒前
pwang_ecust发布了新的文献求助10
5秒前
5秒前
美丽梦桃发布了新的文献求助10
5秒前
yznfly应助班班采纳,获得20
6秒前
6秒前
和谐的数据线完成签到,获得积分10
6秒前
共享精神应助RNAPW采纳,获得10
6秒前
6秒前
7秒前
顾矜应助Fjun采纳,获得10
7秒前
领导范儿应助小李采纳,获得10
7秒前
linnnna发布了新的文献求助10
7秒前
大模型应助Chali采纳,获得10
8秒前
8秒前
8秒前
星辰大海应助小夭采纳,获得10
8秒前
希望天下0贩的0应助家伟采纳,获得10
8秒前
上官若男应助Lorry采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
yy发布了新的文献求助10
10秒前
10秒前
07关注了科研通微信公众号
10秒前
wanci应助sanmumu采纳,获得10
10秒前
11秒前
1900tdlemon发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095