Identifying potential signatures for atherosclerosis in the context of predictive, preventive, and personalized medicine using integrative bioinformatics approaches and machine-learning strategies

背景(考古学) 医学 免疫系统 计算生物学 生物信息学 个性化医疗 机器学习 生物 免疫学 计算机科学 古生物学
作者
Jinling Xu,Hui Zhou,Yangyang Cheng,Guangda Xiang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 433-449 被引量:10
标识
DOI:10.1007/s13167-022-00289-y
摘要

Atherosclerosis is a major contributor to morbidity and mortality worldwide. Although several molecular markers associated with atherosclerosis have been developed in recent years, the lack of robust evidence hinders their clinical applications. For these reasons, identification of novel and robust biomarkers will directly contribute to atherosclerosis management in the context of predictive, preventive, and personalized medicine (PPPM). This integrative analysis aimed to identify critical genetic markers of atherosclerosis and further explore the underlying molecular immune mechanism attributing to the altered biomarkers. Gene Expression Omnibus (GEO) series datasets were downloaded from GEO. Firstly, differential expression analysis and functional analysis were conducted. Multiple machine-learning strategies were then employed to screen and determine key genetic markers, and receiver operating characteristic (ROC) analysis was used to assess diagnostic value. Subsequently, cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) and a single-cell RNA sequencing (scRNA-seq) data were performed to explore relationships between signatures and immune cells. Lastly, we validated the biomarkers’ expression in human and mice experiments. A total of 611 overlapping differentially expressed genes (DEGs) included 361 upregulated and 250 downregulated genes. Based on the enrichment analysis, DEGs were mapped in terms related to immune cell involvements, immune activating process, and inflaming signals. After using multiple machine-learning strategies, dehydrogenase/reductase 9 (DHRS9) and protein tyrosine phosphatase receptor type J (PTPRJ) were identified as critical biomarkers and presented their high diagnostic accuracy for atherosclerosis. From CIBERSORT analysis, both DHRS9 and PTPRJ were significantly related to diverse immune cells, such as macrophages and mast cells. Further scRNA-seq analysis indicated DHRS9 was specifically upregulated in macrophages of atherosclerotic lesions, which was confirmed in atherosclerotic patients and mice. Our findings are the first to report the involvement of DHRS9 in the atherogenesis, and the proatherogenic effect of DHRS9 is mediated by immune mechanism. In addition, we confirm that DHRS9 is localized in macrophages within atherosclerotic plaques. Therefore, upregulated DHRS9 could be a novel potential target for the future predictive diagnostics, targeted prevention, patient stratification, and personalization of medical services in atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕冰蝶发布了新的文献求助10
1秒前
沫柠完成签到 ,获得积分10
2秒前
大观天下发布了新的文献求助10
2秒前
飘萍过客完成签到,获得积分10
3秒前
摆哥完成签到,获得积分10
3秒前
Math4396发布了新的文献求助10
5秒前
6秒前
马慧娜完成签到,获得积分10
7秒前
llly完成签到 ,获得积分10
8秒前
心随以动完成签到 ,获得积分10
8秒前
9秒前
水晶茶杯发布了新的文献求助10
11秒前
14秒前
whff发布了新的文献求助10
14秒前
修辛完成签到 ,获得积分10
16秒前
决明完成签到,获得积分10
18秒前
LJJ完成签到 ,获得积分10
20秒前
Chao完成签到,获得积分10
21秒前
Math4396完成签到 ,获得积分10
22秒前
吃饱了就晒太阳完成签到,获得积分10
25秒前
芊芊完成签到 ,获得积分10
25秒前
张zhang完成签到 ,获得积分10
28秒前
MADAO完成签到 ,获得积分10
31秒前
jinyu完成签到 ,获得积分10
31秒前
moonlight完成签到,获得积分10
32秒前
LitB完成签到,获得积分0
32秒前
Zzz完成签到,获得积分10
33秒前
研友_n0kjPL完成签到,获得积分0
33秒前
黄迪迪完成签到 ,获得积分10
33秒前
芮安的白丁完成签到 ,获得积分10
34秒前
咎淇完成签到,获得积分10
36秒前
苗条馒头完成签到,获得积分10
40秒前
四叶草完成签到 ,获得积分10
40秒前
zzz完成签到 ,获得积分10
42秒前
llllzzh完成签到 ,获得积分10
45秒前
yull完成签到,获得积分10
47秒前
科研通AI2S应助慕冰蝶采纳,获得10
47秒前
zz完成签到,获得积分20
48秒前
YQT完成签到 ,获得积分10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010