Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms

Rust(编程语言) 均方误差 支持向量机 生物 机器学习 人工智能 农学 数学 计算机科学 统计 程序设计语言
作者
Aaron J. DeSalvio,Alper Adak,Seth C. Murray,Scott Wilde,Thomas Isakeit
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:3
标识
DOI:10.1038/s41598-022-11591-0
摘要

Current methods in measuring maize (Zea mays L.) southern rust (Puccinia polyspora Underw.) and subsequent crop senescence require expert observation and are resource-intensive and prone to subjectivity. In this study, unoccupied aerial system (UAS) field-based high-throughput phenotyping (HTP) was employed to collect high-resolution aerial imagery of elite maize hybrids planted in the 2020 and 2021 growing seasons, with 13 UAS flights obtained from 2020 and 17 from 2021. In total, 36 vegetation indices (VIs) were extracted from mosaicked aerial images that served as temporal phenomic predictors for southern rust scored in the field and senescence as scored using UAS-acquired mosaic images. Temporal best linear unbiased predictors (TBLUPs) were calculated using a nested model that treated hybrid performance as nested within flights in terms of rust and senescence. All eight machine learning regressions tested (ridge, lasso, elastic net, random forest, support vector machine with radial and linear kernels, partial least squares, and k-nearest neighbors) outperformed a general linear model with both higher prediction accuracies (92-98%) and lower root mean squared error (RMSE) for rust and senescence scores (linear model RMSE ranged from 65.8 to 2396.5 across all traits, machine learning regressions RMSE ranged from 0.3 to 17.0). UAS-acquired VIs enabled the discovery of novel early quantitative phenotypic indicators of maize senescence and southern rust before being detectable by expert annotation and revealed positive correlations between grain filling time and yield (0.22 and 0.44 in 2020 and 2021), with practical implications for precision agricultural practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凡高爱自由完成签到,获得积分10
3秒前
Yu应助xiaohong采纳,获得10
4秒前
朴实的青雪完成签到,获得积分10
5秒前
ED应助今日阅读量几何采纳,获得10
6秒前
李爱国应助招财小茗采纳,获得10
7秒前
小二郎应助听雨潇潇采纳,获得10
8秒前
落寞的立果完成签到,获得积分10
9秒前
小蘑菇应助sprite采纳,获得20
11秒前
赘婿应助直率的颜演采纳,获得10
11秒前
今日阅读量几何完成签到,获得积分20
12秒前
Igniting完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
555557应助今日阅读量几何采纳,获得10
17秒前
wheattt完成签到,获得积分10
17秒前
完美世界应助泪流不止采纳,获得10
18秒前
lingo发布了新的文献求助10
19秒前
挽风发布了新的文献求助10
19秒前
19秒前
21秒前
Igniting发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
24秒前
招财小茗发布了新的文献求助10
25秒前
阳光项链发布了新的文献求助10
25秒前
26秒前
Eazin发布了新的文献求助30
27秒前
27秒前
FashionBoy应助阳光项链采纳,获得10
30秒前
30秒前
阳光的紊完成签到,获得积分10
33秒前
33秒前
五十完成签到 ,获得积分10
33秒前
随机游走发布了新的文献求助10
34秒前
刘慧鑫发布了新的文献求助20
37秒前
bai发布了新的文献求助60
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182