Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms

Rust(编程语言) 均方误差 支持向量机 生物 机器学习 人工智能 农学 数学 计算机科学 统计 程序设计语言
作者
Aaron J. DeSalvio,Alper Adak,Seth C. Murray,Scott Wilde,Thomas Isakeit
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:3
标识
DOI:10.1038/s41598-022-11591-0
摘要

Current methods in measuring maize (Zea mays L.) southern rust (Puccinia polyspora Underw.) and subsequent crop senescence require expert observation and are resource-intensive and prone to subjectivity. In this study, unoccupied aerial system (UAS) field-based high-throughput phenotyping (HTP) was employed to collect high-resolution aerial imagery of elite maize hybrids planted in the 2020 and 2021 growing seasons, with 13 UAS flights obtained from 2020 and 17 from 2021. In total, 36 vegetation indices (VIs) were extracted from mosaicked aerial images that served as temporal phenomic predictors for southern rust scored in the field and senescence as scored using UAS-acquired mosaic images. Temporal best linear unbiased predictors (TBLUPs) were calculated using a nested model that treated hybrid performance as nested within flights in terms of rust and senescence. All eight machine learning regressions tested (ridge, lasso, elastic net, random forest, support vector machine with radial and linear kernels, partial least squares, and k-nearest neighbors) outperformed a general linear model with both higher prediction accuracies (92-98%) and lower root mean squared error (RMSE) for rust and senescence scores (linear model RMSE ranged from 65.8 to 2396.5 across all traits, machine learning regressions RMSE ranged from 0.3 to 17.0). UAS-acquired VIs enabled the discovery of novel early quantitative phenotypic indicators of maize senescence and southern rust before being detectable by expert annotation and revealed positive correlations between grain filling time and yield (0.22 and 0.44 in 2020 and 2021), with practical implications for precision agricultural practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助醉舞烟罗采纳,获得10
刚刚
笨笨chen发布了新的文献求助10
1秒前
搜集达人应助yin采纳,获得10
1秒前
杨裕农发布了新的文献求助10
2秒前
4秒前
7秒前
SciGPT应助SALI采纳,获得10
8秒前
Jane发布了新的文献求助30
8秒前
XZY发布了新的文献求助10
10秒前
饱满鲂发布了新的文献求助10
10秒前
10秒前
11秒前
小婷君发布了新的文献求助10
12秒前
jbtjht发布了新的文献求助20
12秒前
12秒前
华仔应助时尚凡雁采纳,获得10
14秒前
16秒前
李健应助super chan采纳,获得10
16秒前
17秒前
22秒前
洛汐关注了科研通微信公众号
22秒前
SALI发布了新的文献求助10
23秒前
丘比特应助刘斌采纳,获得10
23秒前
852应助11采纳,获得10
23秒前
wwwwwl完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
淡然书萱关注了科研通微信公众号
26秒前
寻道图强应助Jane采纳,获得30
26秒前
李健的粉丝团团长应助xwqs采纳,获得10
26秒前
时尚凡雁完成签到,获得积分10
26秒前
27秒前
秦秦秦发布了新的文献求助10
29秒前
时尚凡雁发布了新的文献求助10
29秒前
杨裕农完成签到,获得积分20
30秒前
31秒前
super chan发布了新的文献求助10
31秒前
L.C.发布了新的文献求助10
34秒前
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267979
求助须知:如何正确求助?哪些是违规求助? 2907389
关于积分的说明 8341771
捐赠科研通 2577998
什么是DOI,文献DOI怎么找? 1401517
科研通“疑难数据库(出版商)”最低求助积分说明 655050
邀请新用户注册赠送积分活动 634127