亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design

太阳镜 算法 按来源划分的电力成本 粒子群优化 元启发式 遗传算法 差异进化 计算机科学 人口 数学优化 工程类 数学 发电 太阳能 量子力学 电气工程 物理 社会学 人口学 功率(物理)
作者
Toufik Arrif,Samir Hassani,Mawloud Guermoui,Alberto Sánchez-González,Robert A. Taylor,Abdelfetah Belaid
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:192: 745-758 被引量:14
标识
DOI:10.1016/j.renene.2022.04.162
摘要

A comparative analysis has been carried out between eight metaheuristic algorithms, namely; genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), grey wolf optimization (GWO), improved grey wolf optimization (IGWO), artificial bee colony (ABC), grasshopper optimization algorithm (GOA), and a proposed hybrid genetic-grasshopper (GA-GOA) to optimize the staggered heliostat field of the PS10 plant. The annual weighted efficiency is taken as the objective function for field layout optimization. In addition, the investigated algorithms have been assessed in terms of best energy yield, levelized cost of energy (LCOE), land use factor (LUF), and computational cost. It has been found that evolutionary algorithms outperform swarm intelligence algorithms in terms of efficiency, whereas GOA and GWO converge faster. To get high efficiency with low computational cost, a hybrid GA-GOA algorithm has been proposed. This study found that the hybrid GA-GOA algorithm does indeed deliver improved performance, with an optimum weighted efficiency boosted by 1.45% at a computation cost of ∼63.7 h. In addition, it provides the best optimum LCOE of 26.22 c€/kWh and successfully enhances LUF by 11.2% compared to the PS10 reference plant. Based on these results, the authors can conclude that the proposed hybrid GA-GOA algorithm represents a suitable tool to cost-effectively optimize the design of heliostat field layouts and reduce their land footprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里草完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
李健的粉丝团团长应助lan采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
lan完成签到,获得积分10
2分钟前
陈同学完成签到 ,获得积分10
2分钟前
lan发布了新的文献求助10
2分钟前
chen完成签到 ,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
siv完成签到,获得积分10
2分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
2分钟前
科研兵发布了新的文献求助10
3分钟前
天天快乐应助shee采纳,获得10
3分钟前
搜集达人应助科研兵采纳,获得10
3分钟前
insomnia417完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
朴素易梦发布了新的文献求助30
5分钟前
5分钟前
6分钟前
6分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
bkagyin应助科研通管家采纳,获得10
7分钟前
聪明的云完成签到 ,获得积分10
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
朴素易梦完成签到,获得积分10
8分钟前
小马甲应助John采纳,获得10
9分钟前
kuoping完成签到,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827