Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network

人工神经网络 计算机科学 回归 生物系统 环境科学 藻类 人工智能 模式识别(心理学) 算法 机器学习 数学 生态学 生物 统计
作者
Ying Chen,Weiliang Duan,Ying Yang,Zhe Liu,Yongbin Zhang,Junfei Liu,Shaohua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:272: 120967-120967 被引量:7
标识
DOI:10.1016/j.saa.2022.120967
摘要

The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小火车EL完成签到,获得积分10
1秒前
JIASHOUSHOU完成签到,获得积分10
2秒前
2秒前
我是老大应助干净冰露采纳,获得10
2秒前
北地风情应助皮卡丘采纳,获得20
2秒前
Haoziyu发布了新的文献求助30
3秒前
FG关闭了FG文献求助
4秒前
孙伟健发布了新的文献求助10
4秒前
刘富宇完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
单身的青柏完成签到 ,获得积分10
6秒前
annathd发布了新的文献求助10
6秒前
平常心发布了新的文献求助10
6秒前
7秒前
Wind发布了新的文献求助10
7秒前
端庄梦桃完成签到,获得积分10
8秒前
NexusExplorer应助Clover04采纳,获得10
8秒前
9秒前
nc发布了新的文献求助10
9秒前
所所应助111111采纳,获得10
9秒前
华仔应助ruirui采纳,获得30
9秒前
Haoziyu完成签到,获得积分20
10秒前
难过若枫完成签到,获得积分10
10秒前
南枝发布了新的文献求助10
10秒前
悦耳寒云完成签到,获得积分10
11秒前
12秒前
专注月亮发布了新的文献求助10
15秒前
15秒前
难过若枫发布了新的文献求助10
16秒前
16秒前
16秒前
端庄梦桃发布了新的文献求助30
17秒前
簌簌发布了新的文献求助10
18秒前
18秒前
ding应助青筠采纳,获得10
19秒前
q额发布了新的文献求助10
19秒前
tttttt发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568