Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network

人工神经网络 计算机科学 回归 生物系统 环境科学 藻类 人工智能 模式识别(心理学) 算法 机器学习 数学 生态学 生物 统计
作者
Ying Chen,Weiliang Duan,Ying Yang,Zhe Liu,Yongbin Zhang,Junfei Liu,Shaohua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:272: 120967-120967 被引量:7
标识
DOI:10.1016/j.saa.2022.120967
摘要

The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助煎饼果子采纳,获得10
刚刚
Beverly完成签到,获得积分10
刚刚
被动科研发布了新的文献求助10
刚刚
shuqian完成签到,获得积分10
1秒前
暴躁的香旋完成签到,获得积分10
2秒前
2秒前
CHINA_C13发布了新的文献求助150
2秒前
3秒前
3秒前
4秒前
cat_head发布了新的文献求助10
4秒前
Sally完成签到,获得积分10
5秒前
L罗1完成签到,获得积分10
5秒前
浮游应助zz采纳,获得10
5秒前
5秒前
ding应助Windycityguy采纳,获得10
6秒前
青青发布了新的文献求助10
6秒前
7秒前
7秒前
个性的紫菜应助雨寒采纳,获得50
7秒前
8秒前
zhuzhu发布了新的文献求助10
8秒前
奋斗映寒完成签到,获得积分10
8秒前
8秒前
Breathe发布了新的文献求助10
8秒前
淡然的冰海完成签到,获得积分10
9秒前
yanyimeng发布了新的文献求助10
9秒前
猫的淡淡发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
刻苦的三问应助热情蜗牛采纳,获得10
11秒前
搜集达人应助kkkkkkkk采纳,获得10
11秒前
情怀应助yutian928采纳,获得10
12秒前
爆米花应助彭泽林采纳,获得10
12秒前
ffw1发布了新的文献求助10
13秒前
13秒前
呆萌的正豪完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403