Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network

人工神经网络 计算机科学 回归 生物系统 环境科学 藻类 人工智能 模式识别(心理学) 算法 机器学习 数学 生态学 生物 统计
作者
Ying Chen,Weiliang Duan,Ying Yang,Zhe Liu,Yongbin Zhang,Junfei Liu,Shaohua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:272: 120967-120967 被引量:7
标识
DOI:10.1016/j.saa.2022.120967
摘要

The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海大楚完成签到,获得积分10
刚刚
爱听歌的复天完成签到,获得积分10
1秒前
Lwj完成签到,获得积分10
1秒前
1秒前
小芋完成签到,获得积分10
2秒前
2秒前
watermelon应助fff采纳,获得10
2秒前
隐形曼青应助杨张浩采纳,获得10
2秒前
2秒前
窦房结发布了新的文献求助10
2秒前
2秒前
蜗牛完成签到,获得积分10
3秒前
3秒前
Isaac完成签到,获得积分10
3秒前
素养哥完成签到,获得积分20
4秒前
4秒前
yumj完成签到,获得积分10
4秒前
4秒前
XJTU_jyh完成签到,获得积分10
4秒前
5秒前
Lwj发布了新的文献求助10
5秒前
wanci应助虚拟的水壶采纳,获得10
5秒前
Docgyj完成签到 ,获得积分0
6秒前
第二支羽毛完成签到,获得积分10
6秒前
www完成签到,获得积分10
6秒前
鱼王木木完成签到,获得积分10
6秒前
6秒前
6秒前
1mo完成签到,获得积分10
7秒前
liushiyi完成签到,获得积分10
7秒前
Mininine完成签到,获得积分10
7秒前
7秒前
魁梧的豆完成签到,获得积分10
7秒前
CoverSx完成签到,获得积分10
8秒前
心灵美映之完成签到 ,获得积分10
8秒前
在雨里思考完成签到,获得积分10
8秒前
Georges-09完成签到,获得积分10
8秒前
mumu发布了新的文献求助10
8秒前
9秒前
无花果应助乐观的书竹采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619