Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network

人工神经网络 计算机科学 回归 生物系统 环境科学 藻类 人工智能 模式识别(心理学) 算法 机器学习 数学 生态学 生物 统计
作者
Ying Chen,Weiliang Duan,Ying Yang,Zhe Liu,Yongbin Zhang,Junfei Liu,Shaohua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:272: 120967-120967 被引量:7
标识
DOI:10.1016/j.saa.2022.120967
摘要

The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜菜发布了新的文献求助10
2秒前
冰冰发布了新的文献求助10
2秒前
4秒前
狗不理发布了新的文献求助10
4秒前
帅仁123完成签到,获得积分20
4秒前
晴晴完成签到,获得积分10
5秒前
书生完成签到,获得积分10
5秒前
在水一方应助星星采纳,获得10
5秒前
5秒前
Rachel完成签到,获得积分20
6秒前
SHIROKO完成签到,获得积分10
6秒前
nns完成签到,获得积分10
6秒前
派大星发布了新的文献求助10
7秒前
兜兜窦完成签到,获得积分10
7秒前
seven发布了新的文献求助10
7秒前
danny发布了新的文献求助10
8秒前
8秒前
深情安青应助贪玩的听荷采纳,获得10
9秒前
文艺的又亦完成签到,获得积分10
9秒前
黄黄完成签到,获得积分0
9秒前
顺利紫山发布了新的文献求助10
10秒前
西红柿完成签到,获得积分0
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
帕尼灬尼发布了新的文献求助10
10秒前
大力老木发布了新的文献求助10
10秒前
11秒前
11秒前
lkjh驳回了佳佳应助
11秒前
12秒前
12秒前
愉快绿蓉关注了科研通微信公众号
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635