Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network

人工神经网络 计算机科学 回归 生物系统 环境科学 藻类 人工智能 模式识别(心理学) 算法 机器学习 数学 生态学 生物 统计
作者
Ying Chen,Weiliang Duan,Ying Yang,Zhe Liu,Yongbin Zhang,Junfei Liu,Shaohua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:272: 120967-120967 被引量:7
标识
DOI:10.1016/j.saa.2022.120967
摘要

The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜兜完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
拿破仑的鱼完成签到,获得积分10
1秒前
干红完成签到,获得积分10
1秒前
1秒前
赘婿应助BaiX采纳,获得10
2秒前
小二郎应助JUN'KING采纳,获得10
2秒前
Hello应助sunwending采纳,获得10
2秒前
2秒前
LaLaC完成签到,获得积分10
3秒前
Hello应助哈哈哈采纳,获得10
3秒前
Owen应助哈哈哈采纳,获得10
3秒前
迅速的代桃完成签到,获得积分10
3秒前
无极微光应助哈哈哈采纳,获得20
3秒前
Evelyn_ding完成签到,获得积分10
3秒前
chruse发布了新的文献求助10
3秒前
4秒前
JiangSir完成签到,获得积分10
4秒前
阿龙发布了新的文献求助10
4秒前
Aiden完成签到,获得积分10
4秒前
Xiaosi完成签到,获得积分10
4秒前
san完成签到,获得积分10
4秒前
一只生物狗完成签到,获得积分10
4秒前
piaopiao1122发布了新的文献求助10
5秒前
5秒前
5秒前
善学以致用应助夏儿采纳,获得10
5秒前
FashionBoy应助拿破仑的鱼采纳,获得10
6秒前
6秒前
迷失浪人发布了新的文献求助10
6秒前
liang发布了新的文献求助10
8秒前
唐新惠完成签到 ,获得积分10
8秒前
8秒前
xiaofu完成签到,获得积分20
8秒前
XQJ完成签到,获得积分10
8秒前
和谐的敏完成签到,获得积分10
8秒前
wuludie应助天真紫伊采纳,获得20
8秒前
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197