亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network

人工神经网络 计算机科学 回归 生物系统 环境科学 藻类 人工智能 模式识别(心理学) 算法 机器学习 数学 生态学 生物 统计
作者
Ying Chen,Weiliang Duan,Ying Yang,Zhe Liu,Yongbin Zhang,Junfei Liu,Shaohua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:272: 120967-120967 被引量:7
标识
DOI:10.1016/j.saa.2022.120967
摘要

The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Abdurrahman完成签到,获得积分10
7秒前
李健应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
sun发布了新的文献求助10
25秒前
42秒前
娟子完成签到,获得积分10
50秒前
pgdddh完成签到,获得积分10
1分钟前
领导范儿应助daggeraxe采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
cc完成签到 ,获得积分10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
小透明发布了新的文献求助10
2分钟前
3分钟前
清泉发布了新的文献求助10
3分钟前
3分钟前
慕青应助清泉采纳,获得10
3分钟前
乐无穷完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
mrjohn完成签到,获得积分0
4分钟前
5分钟前
5分钟前
子月之路发布了新的文献求助10
5分钟前
5分钟前
田様应助科研通管家采纳,获得10
6分钟前
wooyh完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
Orange应助冷艳的小懒虫采纳,获得10
7分钟前
wanci应助冷艳的小懒虫采纳,获得10
7分钟前
时尚的尔白完成签到,获得积分20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862074
关于积分的说明 15107753
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581890
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494399