Deformation twins stimulated by {112¯2} twinning in adjacent grain in titanium

方向错误 材料科学 晶体孪晶 电子背散射衍射 变形(气象学) 结晶学 凝聚态物理 变形机理 剪切(地质) 晶界 微观结构 几何学 复合材料 物理 数学 化学
作者
Shun Xu,Jian Wang
出处
期刊:Acta Materialia [Elsevier]
卷期号:229: 117805-117805 被引量:18
标识
DOI:10.1016/j.actamat.2022.117805
摘要

Deformation twins are likely nucleated at and impeded by grain boundaries (GBs), developing shear transformation bands. Knowing the accommodated deformation in adjacent grains to the twinning shear is essential for understanding mechanical properties and the evolution of microstructure and texture of polycrystalline aggregates. Based on EBSD analysis, we characterize and statistically group accommodated deformation modes in the neighbor to {112¯2} compression twins (CTWs) in titanium with respect to the misorientation axis/angle. Two types of CTWs are preferably activated in adjacent grains with low misorientation angles, two types of extension twins (ETWs) are favorably activated in adjacent grains with high misorientation angles, and some of {112¯2} CTWs terminate at GBs with high misorientation angles. We discuss the preference of accommodated deformation modes and the selection of twin variants based on the SDGA criterion which couples the displacement gradient accommodation (DGA) and stress driven accommodation (SDA) criteria. Although misorientation angle of GBs is widely used to predict the preferred deformation modes, we demonstrate that misorientation axis that was often ignored, must be considered in determining the preferred deformation modes especially for large misorientation angles. Finally, we predict the misorientation angle/axis pairs with respect to the activity of four twinning modes and two slip systems as the best accommodation mechanism in adjacent grains. The results are useful for the implementation of intergranular deformation mechanisms in multiscale modeling and the design of HCP materials with specific GB characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
越幸运完成签到 ,获得积分10
刚刚
young完成签到 ,获得积分10
刚刚
天天快乐应助成就的烧鹅采纳,获得10
1秒前
cora发布了新的文献求助10
1秒前
诚心的不斜完成签到,获得积分10
2秒前
bono完成签到 ,获得积分10
2秒前
2秒前
3秒前
又要起名字关注了科研通微信公众号
4秒前
可爱的函函应助su采纳,获得10
4秒前
5秒前
澳澳完成签到,获得积分10
6秒前
6秒前
善学以致用应助纯真抽屉采纳,获得10
7秒前
7秒前
笑笑发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
Hello应助cora采纳,获得10
10秒前
汉唐精彩完成签到,获得积分10
11秒前
11秒前
12秒前
田茂青完成签到,获得积分10
12秒前
damian发布了新的文献求助30
12秒前
12秒前
聪明芒果完成签到,获得积分10
12秒前
Vvvvvvv应助虫二先生采纳,获得10
12秒前
西大研究生完成签到 ,获得积分10
12秒前
13秒前
13秒前
呆呆完成签到,获得积分10
13秒前
左一酱完成签到 ,获得积分10
14秒前
平淡南霜发布了新的文献求助10
14秒前
Sweet关注了科研通微信公众号
14秒前
14秒前
赘婿应助wangfu采纳,获得10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794