已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bearing fault diagnosis method based on a multi-head graph attention network

Softmax函数 计算机科学 判别式 人工智能 模式识别(心理学) 特征学习 分类器(UML) 图形 深度学习 方位(导航) 断层(地质) 数据挖掘 机器学习 理论计算机科学 地质学 地震学
作者
Li Jiang,Xingjie Li,Lin Wu,Yibing Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (7): 075012-075012 被引量:37
标识
DOI:10.1088/1361-6501/ac56f1
摘要

Abstract The bearing is the core component of mechanical equipment, and attention has been paid to its health monitoring and fault diagnosis. Bearing fault diagnosis technology based on deep learning has been widely developed because of its powerful feature learning and fault classification ability. However, the traditional deep learning-based bearing fault diagnosis methods fail in mining the relationship between signals explicitly, which is beneficial to fault classification. Therefore, this paper proposes a new method based on a multi-head graph attention network (MHGAT) for bearing fault diagnosis. Firstly, it employs dynamic time warping to transform the original vibration signals into graph data with topological structure, so as to exploit the intrinsic structural information of the independent samples. Next, the graph data is input into the MHGAT, and the weights of neighbor nodes are learned automatically. Then, the MHGAT extracts the discriminative features from different scales and aggregates them into an enhanced, new feature representation of graph nodes through the multi-head attention mechanism. Finally, the enhanced, new features are fed into the SoftMax classifier for bearing fault diagnosis. The effectiveness of the proposed method is examined by two bearing datasets. The superiority of the proposed method is verified by comparison to traditional deep learning diagnosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助jicm采纳,获得10
1秒前
安静幻枫应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
彭于晏应助嘤嘤采纳,获得20
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
安静幻枫应助科研通管家采纳,获得20
5秒前
Albert-WR应助科研通管家采纳,获得10
6秒前
安静幻枫应助科研通管家采纳,获得20
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
涨芝士完成签到 ,获得积分10
6秒前
czy完成签到 ,获得积分10
14秒前
Believe完成签到,获得积分20
16秒前
wsh完成签到 ,获得积分10
17秒前
StephenLuffy发布了新的文献求助10
22秒前
英俊的铭应助Believe采纳,获得10
23秒前
nav完成签到 ,获得积分10
24秒前
风趣过客完成签到,获得积分10
25秒前
Tina完成签到,获得积分20
25秒前
ding应助小点点采纳,获得10
25秒前
Akim应助信仰g采纳,获得10
27秒前
kerry完成签到,获得积分10
28秒前
Abmony完成签到,获得积分10
28秒前
Noel应助Abmony采纳,获得10
33秒前
36秒前
37秒前
可乐完成签到,获得积分10
37秒前
38秒前
xqq完成签到,获得积分10
39秒前
Sir_M发布了新的文献求助10
41秒前
41秒前
42秒前
信仰g发布了新的文献求助10
44秒前
Believe发布了新的文献求助10
46秒前
Wei完成签到 ,获得积分10
46秒前
小点点发布了新的文献求助10
49秒前
动听的安寒完成签到 ,获得积分10
50秒前
jesusmanu完成签到,获得积分10
54秒前
艾森豪威尔完成签到 ,获得积分10
57秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056391
求助须知:如何正确求助?哪些是违规求助? 2713013
关于积分的说明 7434137
捐赠科研通 2357966
什么是DOI,文献DOI怎么找? 1249173
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195