Dynamic feeding method for aquaculture fish using multi-task neural network

生物 任务(项目管理) 水产养殖 动物科学 商业鱼饲料 生产(经济) 渔业 工程类 微观经济学 系统工程 经济
作者
Yaqian Wang,Xiaoning Yu,Jincun Liu,Dong An,Yaoguang Wei
出处
期刊:Aquaculture [Elsevier]
卷期号:551: 737913-737913 被引量:26
标识
DOI:10.1016/j.aquaculture.2022.737913
摘要

In recirculating aquaculture system (RAS), fish feeding is the most important part in production management, which is not only related to economic benefits, but also the key to ensure fish welfare and increase production. At present, in RAS, fish are basically fed either artificially or automatically (quantitatively supply feed at definite time), which can easily result in under-feeding or over-feeding of fish. Therefore, there is an urgent to develop an intelligent method that realizes appropriate feeding according to the actual demands of fish. This research attempts to explore a fish dynamic feeding method based on the multi-task network to meet the automatic adjustment of both the feeding intervals (the time intervals between feeding points in repeated feeding in a single-round) and feeding rates. The specific objectives of this study include two parts: 1) to construct a multi-task network to analyze the feeding activity of cultured fish and monitor the amount of uneaten feed pellets; 2) to design a feeding strategy based on information obtained from the multi-task network that realizes the dynamic adjustment of feeding intervals and the decision of feeding endpoint. The waste of feed pellets can be reduced by dynamically adjusting the feeding intervals, and the under-feeding and over-feeding of fish can be prevented by determining feeding endpoint. The results indicated that the accuracy of feeding activity classification by multi-task network reached 95.44%, and the mean absolute error (MAE) and mean square error (MSE) in uneaten feed pellet counting were 4.80 and 6.75, which indicate that the multi-task network can accurately monitor the fish feeding activity and the amount of uneaten feed pellets. Based on the two monitored information, combined with the feeding strategy, we dynamically adjusted the feeding intervals and determined the feeding endpoint, and then compared the feeding endpoints with manual judgment to verify the feasibility and accuracy of the dynamic feeding method based on the multi-task network. In summary, this research provides a more accurate and efficient solution for the intelligent and precise feeding of cultured fish, and provides the theoretical foundation for the development of intelligent feeding devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Verity应助泽霖采纳,获得10
2秒前
Zewen_Li应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
飘飘玲应助科研通管家采纳,获得10
3秒前
蓝天应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得30
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
XY应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
yyzhou应助科研通管家采纳,获得10
4秒前
飘飘玲应助科研通管家采纳,获得10
4秒前
小于完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Zewen_Li应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
六月疏雨应助科研通管家采纳,获得10
5秒前
草东树应助科研通管家采纳,获得10
5秒前
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
yyzhou应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
XY应助科研通管家采纳,获得10
5秒前
tj发布了新的文献求助10
5秒前
gyhmybsy应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
爱吃的肥虾完成签到,获得积分10
6秒前
6秒前
WN发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951