已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic feeding method for aquaculture fish using multi-task neural network

生物 任务(项目管理) 水产养殖 动物科学 商业鱼饲料 生产(经济) 渔业 工程类 微观经济学 经济 系统工程
作者
Yaqian Wang,Xiaoning Yu,Jincun Liu,Dong An,Yaoguang Wei
出处
期刊:Aquaculture [Elsevier]
卷期号:551: 737913-737913 被引量:21
标识
DOI:10.1016/j.aquaculture.2022.737913
摘要

In recirculating aquaculture system (RAS), fish feeding is the most important part in production management, which is not only related to economic benefits, but also the key to ensure fish welfare and increase production. At present, in RAS, fish are basically fed either artificially or automatically (quantitatively supply feed at definite time), which can easily result in under-feeding or over-feeding of fish. Therefore, there is an urgent to develop an intelligent method that realizes appropriate feeding according to the actual demands of fish. This research attempts to explore a fish dynamic feeding method based on the multi-task network to meet the automatic adjustment of both the feeding intervals (the time intervals between feeding points in repeated feeding in a single-round) and feeding rates. The specific objectives of this study include two parts: 1) to construct a multi-task network to analyze the feeding activity of cultured fish and monitor the amount of uneaten feed pellets; 2) to design a feeding strategy based on information obtained from the multi-task network that realizes the dynamic adjustment of feeding intervals and the decision of feeding endpoint. The waste of feed pellets can be reduced by dynamically adjusting the feeding intervals, and the under-feeding and over-feeding of fish can be prevented by determining feeding endpoint. The results indicated that the accuracy of feeding activity classification by multi-task network reached 95.44%, and the mean absolute error (MAE) and mean square error (MSE) in uneaten feed pellet counting were 4.80 and 6.75, which indicate that the multi-task network can accurately monitor the fish feeding activity and the amount of uneaten feed pellets. Based on the two monitored information, combined with the feeding strategy, we dynamically adjusted the feeding intervals and determined the feeding endpoint, and then compared the feeding endpoints with manual judgment to verify the feasibility and accuracy of the dynamic feeding method based on the multi-task network. In summary, this research provides a more accurate and efficient solution for the intelligent and precise feeding of cultured fish, and provides the theoretical foundation for the development of intelligent feeding devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa完成签到,获得积分10
1秒前
顾矜应助Dawn采纳,获得10
3秒前
任性锦程发布了新的文献求助10
3秒前
Akim应助结实的凉面采纳,获得10
8秒前
xb_Z发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助KEVIN采纳,获得10
11秒前
13秒前
JY应助艾文采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得20
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
xb_Z完成签到,获得积分10
19秒前
23秒前
zinc发布了新的文献求助10
24秒前
任性锦程完成签到,获得积分20
24秒前
30秒前
leon完成签到,获得积分10
32秒前
35秒前
脑洞疼应助silence采纳,获得10
36秒前
37秒前
zinc完成签到,获得积分10
39秒前
黄医生完成签到,获得积分10
39秒前
艾文应助做实验的蘑菇采纳,获得10
40秒前
49秒前
silence发布了新的文献求助10
52秒前
1分钟前
1分钟前
1分钟前
原子完成签到,获得积分10
1分钟前
AWEI发布了新的文献求助10
1分钟前
认真白薇发布了新的文献求助10
1分钟前
whole完成签到 ,获得积分10
1分钟前
1分钟前
田様应助做实验的蘑菇采纳,获得10
1分钟前
Otter完成签到,获得积分10
1分钟前
慕青应助BakerStreet采纳,获得10
1分钟前
123发布了新的文献求助10
1分钟前
庞mou完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133873
求助须知:如何正确求助?哪些是违规求助? 2784787
关于积分的说明 7768500
捐赠科研通 2440159
什么是DOI,文献DOI怎么找? 1297188
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791