Dynamic feeding method for aquaculture fish using multi-task neural network

生物 任务(项目管理) 水产养殖 动物科学 商业鱼饲料 生产(经济) 渔业 工程类 微观经济学 经济 系统工程
作者
Yaqian Wang,Xiaoning Yu,Jincun Liu,Dong An,Yaoguang Wei
出处
期刊:Aquaculture [Elsevier]
卷期号:551: 737913-737913 被引量:21
标识
DOI:10.1016/j.aquaculture.2022.737913
摘要

In recirculating aquaculture system (RAS), fish feeding is the most important part in production management, which is not only related to economic benefits, but also the key to ensure fish welfare and increase production. At present, in RAS, fish are basically fed either artificially or automatically (quantitatively supply feed at definite time), which can easily result in under-feeding or over-feeding of fish. Therefore, there is an urgent to develop an intelligent method that realizes appropriate feeding according to the actual demands of fish. This research attempts to explore a fish dynamic feeding method based on the multi-task network to meet the automatic adjustment of both the feeding intervals (the time intervals between feeding points in repeated feeding in a single-round) and feeding rates. The specific objectives of this study include two parts: 1) to construct a multi-task network to analyze the feeding activity of cultured fish and monitor the amount of uneaten feed pellets; 2) to design a feeding strategy based on information obtained from the multi-task network that realizes the dynamic adjustment of feeding intervals and the decision of feeding endpoint. The waste of feed pellets can be reduced by dynamically adjusting the feeding intervals, and the under-feeding and over-feeding of fish can be prevented by determining feeding endpoint. The results indicated that the accuracy of feeding activity classification by multi-task network reached 95.44%, and the mean absolute error (MAE) and mean square error (MSE) in uneaten feed pellet counting were 4.80 and 6.75, which indicate that the multi-task network can accurately monitor the fish feeding activity and the amount of uneaten feed pellets. Based on the two monitored information, combined with the feeding strategy, we dynamically adjusted the feeding intervals and determined the feeding endpoint, and then compared the feeding endpoints with manual judgment to verify the feasibility and accuracy of the dynamic feeding method based on the multi-task network. In summary, this research provides a more accurate and efficient solution for the intelligent and precise feeding of cultured fish, and provides the theoretical foundation for the development of intelligent feeding devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Mian发布了新的文献求助10
1秒前
完美世界应助张静静采纳,获得10
1秒前
wu完成签到,获得积分10
1秒前
朴素的书琴完成签到,获得积分10
2秒前
dai完成签到,获得积分10
2秒前
务实大船发布了新的文献求助10
2秒前
四夕水窖完成签到,获得积分10
3秒前
FashionBoy应助曾经的臻采纳,获得10
3秒前
白白发布了新的文献求助10
3秒前
打打应助sternen采纳,获得30
3秒前
111完成签到,获得积分10
3秒前
加减乘除发布了新的文献求助10
4秒前
小憩发布了新的文献求助10
4秒前
ASZXDW完成签到,获得积分10
4秒前
飞翔的小舟完成签到,获得积分20
4秒前
csa1007完成签到,获得积分10
4秒前
纷纷故事完成签到,获得积分10
5秒前
5秒前
哲999发布了新的文献求助10
5秒前
麦苳完成签到,获得积分10
5秒前
6秒前
汉堡包应助JIE采纳,获得10
6秒前
伏地魔完成签到,获得积分10
6秒前
7秒前
yyf完成签到,获得积分10
7秒前
XWT完成签到,获得积分10
7秒前
虚安完成签到 ,获得积分10
7秒前
xqy完成签到 ,获得积分10
7秒前
啵乐乐发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
momo完成签到,获得积分10
9秒前
慕青应助饕餮1235采纳,获得10
9秒前
小蘑菇应助CC采纳,获得10
10秒前
白白完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740