Intrusion detection and mitigation of attacks in microgrid using enhanced deep belief network

入侵检测系统 微电网 计算机科学 恒虚警率 服务拒绝攻击 假阳性率 深信不疑网络 收敛速度 实时计算 人工智能 深度学习 计算机安全 钥匙(锁) 控制(管理) 互联网 万维网
作者
Danalakshmi Durairaj,V. Thiruppathy Kesavan,Abolfazl Mehbodniya,Syed Umar,Tanweer Alam
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 1519-1541 被引量:21
标识
DOI:10.1080/15567036.2021.2023237
摘要

The convergence from the electric grid to the smart microgrid motivates the incorporation of the intrusion detection system to identify intruders and mitigate the resultant damages to ensure system stability. It is planned to employ the Deep Belief Network (DBN), which is one of the deep learning techniques with some improvement to detect the attacks in a microgrid. To improve the accuracy of the detection, a rule-based detection technique is added to enhance the detection of intruders using DBN. The proposed technique is supported with the layered micro-grid architecture that makes the system flexible and simple toward the implementation. The proposed Enhanced DBN (EDBN) performance is measured in different bus representations for identifying the higher hit rate and rejection rate, lesser miss rate and false-positive rate. Two attacks, such as False Data Injection and Denial of Service attacks, are generated by Greedy Algorithm and are detected by the proposed technique. Compared to the existing detection and control system, the proposed EDBN technique provides accuracy higher than 92%, false alarm rate less than 1%. Thus, the experimental results show that the proposed technique accuracy is higher than the existing intrusion detection techniques in a microgrid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞羽发布了新的文献求助10
刚刚
1秒前
坦率纸飞机完成签到 ,获得积分10
2秒前
萌萌哒完成签到,获得积分10
3秒前
3秒前
3秒前
zhazd完成签到,获得积分10
4秒前
即投即中发布了新的文献求助10
4秒前
小马甲应助义气的妙松采纳,获得10
5秒前
科研废物完成签到,获得积分20
6秒前
111发布了新的文献求助10
6秒前
8秒前
科研废物发布了新的文献求助10
9秒前
NexusExplorer应助泡芙采纳,获得10
11秒前
火火火完成签到,获得积分10
11秒前
Grant完成签到,获得积分10
14秒前
香香甜甜发布了新的文献求助10
14秒前
彭于晏应助哦密密麻麻采纳,获得10
14秒前
研友_VZG7GZ应助大苏采纳,获得10
17秒前
chengzugen发布了新的文献求助10
18秒前
19秒前
19秒前
共享精神应助天色青青采纳,获得10
20秒前
22秒前
23秒前
24秒前
星星又累发布了新的文献求助10
24秒前
25秒前
26秒前
张好好发布了新的文献求助10
26秒前
27秒前
27秒前
小圆真圆发布了新的文献求助10
28秒前
冰雪发布了新的文献求助10
28秒前
ding应助echo采纳,获得10
29秒前
30秒前
yar应助张好好采纳,获得10
31秒前
FashionBoy应助曾开心采纳,获得10
32秒前
三十完成签到 ,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466496
求助须知:如何正确求助?哪些是违规求助? 3059287
关于积分的说明 9065817
捐赠科研通 2749768
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696804