亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs

计算机科学 生物识别 会话(web分析) 击键动态学 人工智能 脑电图 机器学习 任务(项目管理) 认证(法律) 模式识别(心理学) 数据挖掘 计算机安全 密码 万维网 管理 经济 S/键 精神科 心理学
作者
Arafat Rahman,Muhammad E. H. Chowdhury,Amith Khandakar,Anas Tahir,Nabil Ibtehaz,Md Shafayet Hossain,Serkan Kıranyaz,Junaid Malik,Haya Monawwar,Muhammad Abdul Kadir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:142: 105238-105238 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105238
摘要

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
舒服的觅夏完成签到,获得积分10
9秒前
10秒前
赘婿应助shinn采纳,获得10
18秒前
阿里完成签到,获得积分10
20秒前
1111关注了科研通微信公众号
22秒前
23秒前
动听的涵山完成签到,获得积分10
25秒前
思源应助郴欧尼采纳,获得10
25秒前
耕云钓月发布了新的文献求助10
27秒前
长安宁完成签到 ,获得积分10
28秒前
29秒前
34秒前
赘婿应助耕云钓月采纳,获得10
36秒前
shinn发布了新的文献求助10
37秒前
Ava应助shinn采纳,获得10
42秒前
43秒前
44秒前
54秒前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
然463完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夜夜景发布了新的文献求助10
1分钟前
1分钟前
美美发布了新的文献求助10
1分钟前
李爱国应助shinn采纳,获得10
1分钟前
忆修发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247