Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs

计算机科学 生物识别 会话(web分析) 击键动态学 人工智能 脑电图 机器学习 任务(项目管理) 认证(法律) 模式识别(心理学) 数据挖掘 计算机安全 密码 心理学 管理 精神科 S/键 万维网 经济
作者
Arafat Rahman,Muhammad E. H. Chowdhury,Amith Khandakar,Anas Tahir,Nabil Ibtehaz,Md Shafayet Hossain,Serkan Kıranyaz,Junaid Malik,Haya Monawwar,Muhammad Abdul Kadir
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:142: 105238-105238 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105238
摘要

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fan完成签到 ,获得积分10
刚刚
冰之完成签到,获得积分10
1秒前
smalldesk完成签到,获得积分10
1秒前
万能图书馆应助!!采纳,获得10
2秒前
080206ws发布了新的文献求助10
4秒前
汤汤完成签到,获得积分10
4秒前
好运绵绵完成签到 ,获得积分10
4秒前
啾啾啾完成签到,获得积分20
5秒前
李明关注了科研通微信公众号
6秒前
sujingbo完成签到 ,获得积分10
6秒前
7秒前
7秒前
树袋发布了新的文献求助30
7秒前
WangSanSan完成签到,获得积分10
8秒前
8秒前
万能图书馆应助flippedaaa采纳,获得10
10秒前
仰卧起坐发布了新的文献求助10
11秒前
Proddy发布了新的文献求助10
13秒前
Aurora发布了新的文献求助10
13秒前
合适的梦菡完成签到,获得积分10
14秒前
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
一米阳光应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
yx_cheng应助科研通管家采纳,获得20
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得30
16秒前
16秒前
17秒前
17秒前
今后应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
英姑应助科研通管家采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234