亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs

计算机科学 生物识别 会话(web分析) 击键动态学 人工智能 脑电图 机器学习 任务(项目管理) 认证(法律) 模式识别(心理学) 数据挖掘 计算机安全 密码 万维网 管理 经济 S/键 精神科 心理学
作者
Arafat Rahman,Muhammad E. H. Chowdhury,Amith Khandakar,Anas Tahir,Nabil Ibtehaz,Md Shafayet Hossain,Serkan Kıranyaz,Junaid Malik,Haya Monawwar,Muhammad Abdul Kadir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:142: 105238-105238 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105238
摘要

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pengfei_Soil发布了新的文献求助10
1秒前
2秒前
8秒前
10秒前
yyds完成签到,获得积分0
11秒前
14秒前
嘻嘻嘻完成签到,获得积分10
14秒前
17秒前
18秒前
2jz发布了新的文献求助10
22秒前
maopf发布了新的文献求助10
27秒前
小蘑菇应助结实的凉面采纳,获得10
29秒前
29秒前
qianyixingchen完成签到 ,获得积分10
33秒前
SciGPT应助沉默的倔驴采纳,获得10
34秒前
迅速初柳发布了新的文献求助10
35秒前
maopf完成签到,获得积分10
39秒前
c7发布了新的文献求助10
40秒前
英俊的铭应助迅速初柳采纳,获得10
43秒前
44秒前
西蓝花战士完成签到 ,获得积分10
48秒前
49秒前
炙热成仁发布了新的文献求助10
50秒前
NI完成签到 ,获得积分10
56秒前
58秒前
赘婿应助悦耳青梦采纳,获得10
1分钟前
科研通AI6.1应助我不吃葱采纳,获得10
1分钟前
科研通AI6.1应助小年小少采纳,获得20
1分钟前
炙热成仁完成签到,获得积分10
1分钟前
希希完成签到 ,获得积分10
1分钟前
Joy关注了科研通微信公众号
1分钟前
Hello应助沉默的倔驴采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510