Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs

计算机科学 生物识别 会话(web分析) 击键动态学 人工智能 脑电图 机器学习 任务(项目管理) 认证(法律) 模式识别(心理学) 数据挖掘 计算机安全 密码 心理学 管理 精神科 S/键 万维网 经济
作者
Arafat Rahman,Muhammad E. H. Chowdhury,Amith Khandakar,Anas Tahir,Nabil Ibtehaz,Md Shafayet Hossain,Serkan Kıranyaz,Junaid Malik,Haya Monawwar,Muhammad Abdul Kadir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:142: 105238-105238 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105238
摘要

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
333发布了新的文献求助10
刚刚
某某完成签到,获得积分10
刚刚
dd发布了新的文献求助10
刚刚
1秒前
wl9529完成签到,获得积分10
2秒前
2秒前
清风伴夏发布了新的文献求助10
2秒前
2秒前
3秒前
聚砂成塔完成签到,获得积分10
3秒前
4秒前
义气酬海完成签到,获得积分10
5秒前
5秒前
5秒前
SciGPT应助xhmmm采纳,获得10
5秒前
CC完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
younghippo发布了新的文献求助10
7秒前
咔什么嚓发布了新的文献求助10
7秒前
Ou完成签到,获得积分10
7秒前
迅速如柏发布了新的文献求助20
7秒前
8秒前
科研通AI6应助DMSO采纳,获得30
8秒前
8秒前
8秒前
EasonYao发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
唐古拉完成签到,获得积分10
8秒前
科研通AI6应助刻苦靳采纳,获得10
9秒前
9秒前
9秒前
顾夜白发布了新的文献求助10
9秒前
芋泥波波完成签到,获得积分10
9秒前
一木张完成签到,获得积分10
9秒前
大大发布了新的文献求助10
10秒前
义气酬海发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502