Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs

计算机科学 生物识别 会话(web分析) 击键动态学 人工智能 脑电图 机器学习 任务(项目管理) 认证(法律) 模式识别(心理学) 数据挖掘 计算机安全 密码 心理学 管理 精神科 S/键 万维网 经济
作者
Arafat Rahman,Muhammad E. H. Chowdhury,Amith Khandakar,Anas Tahir,Nabil Ibtehaz,Md Shafayet Hossain,Serkan Kıranyaz,Junaid Malik,Haya Monawwar,Muhammad Abdul Kadir
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:142: 105238-105238 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105238
摘要

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助El采纳,获得10
2秒前
英姑应助lixiaotian采纳,获得10
2秒前
2秒前
3秒前
动听一手发布了新的文献求助30
4秒前
SciGPT应助科研通管家采纳,获得100
4秒前
李健应助科研通管家采纳,获得10
4秒前
每天100次应助科研通管家采纳,获得20
4秒前
4秒前
天天快乐应助科研通管家采纳,获得50
5秒前
小青椒应助科研通管家采纳,获得20
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
今后应助uiui采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
难过亦丝完成签到,获得积分10
6秒前
7秒前
nana发布了新的文献求助10
7秒前
难过亦丝发布了新的文献求助10
8秒前
科研通AI6应助自信的盼海采纳,获得10
9秒前
科研通AI5应助RepertoireFupeng采纳,获得30
10秒前
10秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
科研通AI2S应助陈煜采纳,获得10
11秒前
11秒前
星星点灯完成签到,获得积分10
12秒前
12秒前
13秒前
贪玩的半芹完成签到,获得积分10
13秒前
刻苦的元灵完成签到 ,获得积分10
14秒前
15秒前
16秒前
图图发布了新的文献求助10
16秒前
Lll发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641