Predicting postoperative recovery in cervical spondylotic myelopathy: construction and interpretation of T2*-weighted radiomic-based extra trees models

医学 神经组阅片室 介入放射学 放射科 外科
作者
Meng-Ze Zhang,Han-Qiang Ou-Yang,Jianfang Liu,Dan Jin,Chunjie Wang,Ming Ni,Xiao-Guang Liu,Ning Lang,Liang Jiang,Huishu Yuan
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-021-08383-x
摘要

Objectives Conventional MRI may not be ideal for predicting cervical spondylotic myelopathy (CSM) prognosis. In this study, we used radiomics in predicting postoperative recovery in CSM. We aimed to develop and validate radiomic feature-based extra trees models.MethodsThere were 151 patients with CSM who underwent preoperative T2-/ T2*-weighted imaging (WI) and surgery. They were divided into good/poor outcome groups based on the recovery rate. Datasets from multiple scanners were randomised into training and internal validation sets, while the dataset from an independent scanner was used for external validation. Radiomic features were extracted from the transverse spinal cord at the maximum compressed level. Threshold selection algorithm, collinearity removal, and tree-based feature selection were applied sequentially in the training set to obtain the optimal radiomic features. The classification of intramedullary increased signal on T2/T2*WI and compression ratio of the spinal cord on T2*WI were selected as the conventional MRI features. Clinical features were age, preoperative mJOA, and symptom duration. Four models were constructed: radiological, radiomic, clinical-radiological, and clinical-radiomic. An AUC significantly > 0.5 was considered meaningful predictive performance based on the DeLong test. The mean decrease in impurity was used to measure feature importance. p < 0.05 was considered statistically significant.ResultsOn internal and external validations, AUCs of the radiomic and clinical-radiomic models, and radiological and clinical-radiological models ranged from 0.71 to 0.81 (significantly > 0.5) and 0.40 to 0.55, respectively. Wavelet-LL first-order variance was the most important feature in the radiomic model.ConclusionRadiomic features, especially wavelet-LL first-order variance, contribute to meaningful predictive models for CSM prognosis.Key Points • Conventional MRI features may not be ideal in predicting prognosis. • Radiomics provides greater predictive efficiency in the recovery from cervical spondylotic myelopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助杨杨爱科研采纳,获得10
1秒前
清茶旧友完成签到,获得积分10
1秒前
1秒前
紫色de泡沫完成签到,获得积分10
1秒前
孙福禄应助wfunny采纳,获得10
2秒前
时闲应助z掌握一下采纳,获得10
2秒前
wocala完成签到,获得积分10
3秒前
koko完成签到,获得积分10
3秒前
吕奎完成签到,获得积分10
3秒前
4秒前
fzzzzlucy应助T拐拐采纳,获得10
4秒前
伏城完成签到 ,获得积分10
4秒前
SYLH应助leodu采纳,获得10
4秒前
懂事梨完成签到,获得积分20
4秒前
17self完成签到,获得积分10
5秒前
上官若男应助mm采纳,获得10
5秒前
5秒前
书虫发布了新的文献求助10
7秒前
7秒前
阉太狼完成签到,获得积分10
8秒前
Gdhdjxbbx完成签到,获得积分10
8秒前
小蘑菇应助CHBW采纳,获得10
8秒前
爆米花应助hhm采纳,获得10
8秒前
9秒前
kk完成签到,获得积分10
9秒前
10秒前
熊大完成签到,获得积分10
10秒前
打打应助Leeu采纳,获得30
11秒前
Hannahcx发布了新的文献求助10
12秒前
12秒前
小蘑菇应助chang采纳,获得10
12秒前
wyf发布了新的文献求助10
12秒前
12秒前
Zer关闭了Zer文献求助
12秒前
wfwl完成签到,获得积分10
13秒前
调皮的秋柔完成签到,获得积分10
13秒前
13秒前
酷波er应助Solitude采纳,获得10
13秒前
小周周发布了新的文献求助10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650