Predicting postoperative recovery in cervical spondylotic myelopathy: construction and interpretation of T2*-weighted radiomic-based extra trees models

医学 神经组阅片室 介入放射学 放射科 外科
作者
Meng-Ze Zhang,Han-Qiang Ou-Yang,Jianfang Liu,Dan Jin,Chunjie Wang,Ming Ni,Xiao-Guang Liu,Ning Lang,Liang Jiang,Huishu Yuan
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-021-08383-x
摘要

Objectives Conventional MRI may not be ideal for predicting cervical spondylotic myelopathy (CSM) prognosis. In this study, we used radiomics in predicting postoperative recovery in CSM. We aimed to develop and validate radiomic feature-based extra trees models.MethodsThere were 151 patients with CSM who underwent preoperative T2-/ T2*-weighted imaging (WI) and surgery. They were divided into good/poor outcome groups based on the recovery rate. Datasets from multiple scanners were randomised into training and internal validation sets, while the dataset from an independent scanner was used for external validation. Radiomic features were extracted from the transverse spinal cord at the maximum compressed level. Threshold selection algorithm, collinearity removal, and tree-based feature selection were applied sequentially in the training set to obtain the optimal radiomic features. The classification of intramedullary increased signal on T2/T2*WI and compression ratio of the spinal cord on T2*WI were selected as the conventional MRI features. Clinical features were age, preoperative mJOA, and symptom duration. Four models were constructed: radiological, radiomic, clinical-radiological, and clinical-radiomic. An AUC significantly > 0.5 was considered meaningful predictive performance based on the DeLong test. The mean decrease in impurity was used to measure feature importance. p < 0.05 was considered statistically significant.ResultsOn internal and external validations, AUCs of the radiomic and clinical-radiomic models, and radiological and clinical-radiological models ranged from 0.71 to 0.81 (significantly > 0.5) and 0.40 to 0.55, respectively. Wavelet-LL first-order variance was the most important feature in the radiomic model.ConclusionRadiomic features, especially wavelet-LL first-order variance, contribute to meaningful predictive models for CSM prognosis.Key Points • Conventional MRI features may not be ideal in predicting prognosis. • Radiomics provides greater predictive efficiency in the recovery from cervical spondylotic myelopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGBond完成签到,获得积分10
刚刚
孔雀翎发布了新的文献求助10
刚刚
寂寞的灵完成签到,获得积分10
1秒前
后知后觉发布了新的文献求助10
1秒前
百十余完成签到,获得积分10
1秒前
1秒前
1秒前
Zhaorf完成签到,获得积分10
2秒前
沉默紫槐完成签到,获得积分10
2秒前
深情安青应助易达采纳,获得10
2秒前
默默海露发布了新的文献求助10
4秒前
5秒前
flyfish完成签到,获得积分10
5秒前
36456657应助chen采纳,获得10
5秒前
每念至此完成签到,获得积分10
6秒前
大力黑米完成签到 ,获得积分10
7秒前
123发布了新的文献求助30
7秒前
搜集达人应助gaos采纳,获得10
7秒前
hengy发布了新的文献求助10
7秒前
杳鸢应助Xenia采纳,获得10
8秒前
kekekelili完成签到,获得积分10
9秒前
9秒前
zhonghbush发布了新的文献求助10
10秒前
reck发布了新的文献求助10
10秒前
10秒前
10秒前
kimcandy完成签到,获得积分10
10秒前
华仔应助任品贤采纳,获得10
11秒前
无花果应助急雪回风采纳,获得10
11秒前
13秒前
曾经的灵完成签到,获得积分20
13秒前
bkagyin应助小宇采纳,获得10
13秒前
许之北完成签到 ,获得积分10
13秒前
13秒前
船舵发布了新的文献求助10
13秒前
gaos完成签到,获得积分10
14秒前
念念发布了新的文献求助10
14秒前
An_mie完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672