Predicting postoperative recovery in cervical spondylotic myelopathy: construction and interpretation of T2*-weighted radiomic-based extra trees models

医学 神经组阅片室 介入放射学 放射科 外科
作者
Meng-Ze Zhang,Han-Qiang Ou-Yang,Jianfang Liu,Dan Jin,Chunjie Wang,Ming Ni,Xiao-Guang Liu,Ning Lang,Liang Jiang,Huishu Yuan
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-021-08383-x
摘要

Objectives Conventional MRI may not be ideal for predicting cervical spondylotic myelopathy (CSM) prognosis. In this study, we used radiomics in predicting postoperative recovery in CSM. We aimed to develop and validate radiomic feature-based extra trees models.MethodsThere were 151 patients with CSM who underwent preoperative T2-/ T2*-weighted imaging (WI) and surgery. They were divided into good/poor outcome groups based on the recovery rate. Datasets from multiple scanners were randomised into training and internal validation sets, while the dataset from an independent scanner was used for external validation. Radiomic features were extracted from the transverse spinal cord at the maximum compressed level. Threshold selection algorithm, collinearity removal, and tree-based feature selection were applied sequentially in the training set to obtain the optimal radiomic features. The classification of intramedullary increased signal on T2/T2*WI and compression ratio of the spinal cord on T2*WI were selected as the conventional MRI features. Clinical features were age, preoperative mJOA, and symptom duration. Four models were constructed: radiological, radiomic, clinical-radiological, and clinical-radiomic. An AUC significantly > 0.5 was considered meaningful predictive performance based on the DeLong test. The mean decrease in impurity was used to measure feature importance. p < 0.05 was considered statistically significant.ResultsOn internal and external validations, AUCs of the radiomic and clinical-radiomic models, and radiological and clinical-radiological models ranged from 0.71 to 0.81 (significantly > 0.5) and 0.40 to 0.55, respectively. Wavelet-LL first-order variance was the most important feature in the radiomic model.ConclusionRadiomic features, especially wavelet-LL first-order variance, contribute to meaningful predictive models for CSM prognosis.Key Points • Conventional MRI features may not be ideal in predicting prognosis. • Radiomics provides greater predictive efficiency in the recovery from cervical spondylotic myelopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mustead发布了新的文献求助10
刚刚
obsession发布了新的文献求助10
2秒前
3秒前
现代小丸子完成签到 ,获得积分10
3秒前
搜集达人应助suiting采纳,获得10
4秒前
小羊摸鱼关注了科研通微信公众号
5秒前
陈明甫发布了新的文献求助10
6秒前
www发布了新的文献求助10
6秒前
6秒前
善学以致用应助大胆隶采纳,获得10
7秒前
小小发布了新的文献求助30
8秒前
呼呼呼完成签到,获得积分10
8秒前
李健的小迷弟应助celeste采纳,获得10
8秒前
所所应助lll采纳,获得10
10秒前
幽默千柔发布了新的文献求助10
11秒前
Akim应助lejunia采纳,获得10
13秒前
13秒前
lll完成签到,获得积分20
17秒前
完美世界应助靴肥肥采纳,获得10
19秒前
断章发布了新的文献求助10
19秒前
香蕉觅云应助Cindy采纳,获得10
20秒前
20秒前
21秒前
隐形曼青应助妮多采纳,获得10
22秒前
代杰居然发布了新的文献求助10
22秒前
mustead完成签到,获得积分10
23秒前
23秒前
坦率灵槐应助故意的若风采纳,获得10
23秒前
yuyu完成签到,获得积分10
24秒前
姜姜研发布了新的文献求助10
24秒前
suiting完成签到,获得积分10
24秒前
25秒前
summer完成签到,获得积分10
25秒前
25秒前
25秒前
Jasper应助666采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得30
26秒前
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
Vency应助科研通管家采纳,获得150
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309595
求助须知:如何正确求助?哪些是违规求助? 4454149
关于积分的说明 13859390
捐赠科研通 4342109
什么是DOI,文献DOI怎么找? 2384337
邀请新用户注册赠送积分活动 1378821
关于科研通互助平台的介绍 1346965