已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting postoperative recovery in cervical spondylotic myelopathy: construction and interpretation of T2*-weighted radiomic-based extra trees models

医学 神经组阅片室 介入放射学 放射科 外科
作者
Meng-Ze Zhang,Han-Qiang Ou-Yang,Jianfang Liu,Dan Jin,Chunjie Wang,Ming Ni,Xiao-Guang Liu,Ning Lang,Liang Jiang,Huishu Yuan
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-021-08383-x
摘要

Objectives Conventional MRI may not be ideal for predicting cervical spondylotic myelopathy (CSM) prognosis. In this study, we used radiomics in predicting postoperative recovery in CSM. We aimed to develop and validate radiomic feature-based extra trees models.MethodsThere were 151 patients with CSM who underwent preoperative T2-/ T2*-weighted imaging (WI) and surgery. They were divided into good/poor outcome groups based on the recovery rate. Datasets from multiple scanners were randomised into training and internal validation sets, while the dataset from an independent scanner was used for external validation. Radiomic features were extracted from the transverse spinal cord at the maximum compressed level. Threshold selection algorithm, collinearity removal, and tree-based feature selection were applied sequentially in the training set to obtain the optimal radiomic features. The classification of intramedullary increased signal on T2/T2*WI and compression ratio of the spinal cord on T2*WI were selected as the conventional MRI features. Clinical features were age, preoperative mJOA, and symptom duration. Four models were constructed: radiological, radiomic, clinical-radiological, and clinical-radiomic. An AUC significantly > 0.5 was considered meaningful predictive performance based on the DeLong test. The mean decrease in impurity was used to measure feature importance. p < 0.05 was considered statistically significant.ResultsOn internal and external validations, AUCs of the radiomic and clinical-radiomic models, and radiological and clinical-radiological models ranged from 0.71 to 0.81 (significantly > 0.5) and 0.40 to 0.55, respectively. Wavelet-LL first-order variance was the most important feature in the radiomic model.ConclusionRadiomic features, especially wavelet-LL first-order variance, contribute to meaningful predictive models for CSM prognosis.Key Points • Conventional MRI features may not be ideal in predicting prognosis. • Radiomics provides greater predictive efficiency in the recovery from cervical spondylotic myelopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助青原采纳,获得10
刚刚
3秒前
3秒前
3秒前
5秒前
蒋莹萱完成签到 ,获得积分10
5秒前
SiO2完成签到 ,获得积分0
6秒前
6秒前
包尚易发布了新的文献求助30
7秒前
lonny完成签到,获得积分20
7秒前
Zyy发布了新的文献求助20
7秒前
隐形曼青应助杜若采纳,获得10
8秒前
9秒前
TIANCAI发布了新的文献求助10
9秒前
英吉利25发布了新的文献求助10
11秒前
12秒前
成就乐珍发布了新的文献求助10
13秒前
ccm应助听话的寒天采纳,获得10
14秒前
可爱的函函应助优雅的猪采纳,获得10
14秒前
lrelia02发布了新的文献求助10
14秒前
汉堡包应助科研通管家采纳,获得30
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
gstaihn完成签到,获得积分10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得30
15秒前
zjcbk985发布了新的文献求助10
15秒前
15秒前
ceeray23发布了新的文献求助20
15秒前
15秒前
Yangtze完成签到 ,获得积分10
16秒前
hyz124完成签到,获得积分10
17秒前
hfd完成签到,获得积分10
18秒前
jzm完成签到,获得积分10
19秒前
lll发布了新的文献求助10
20秒前
zjcbk985完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515229
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513081
捐赠科研通 4545068
什么是DOI,文献DOI怎么找? 2490383
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444058