ConditionSenseNet: A Deep Interpolatory ConvNet for Bearing Intelligent Diagnosis Under Variational Working Conditions

人工智能 计算机科学 深度学习 卷积神经网络 稳健性(进化) 人工神经网络 模式识别(心理学) 插值(计算机图形学) 卷积(计算机科学) 支持向量机 机器学习 生物化学 运动(物理) 基因 化学
作者
Yinjun Wang,Xiaoxi Ding,Rui Liu,Yimin Shao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (10): 6558-6568 被引量:37
标识
DOI:10.1109/tii.2021.3134273
摘要

Deep learning, with its ability of feature mining and logical judgement, has been widely studied in industrial intelligent diagnosis, including bearing fault diagnosis. However, an explicable and representable expression of deep learning architecture for the variational working conditions has been rarely discussed while it is known that vibration features from bearings are seriously influenced by variational working conditions. In this article, a deep interpolation ConvNet (DICN) architecture with three special layers, consisting of multiple sub-ConvNet units, weight unit, and fusion unit, is presented with the basic deep ConvNet architecture. Different from the traditional network, the first sub-ConvNet extracts the fault features under different working conditions, while the corresponding condition weight unit is learned from a working condition identification task. With the principle of interpolation theory, fusion unit is employed to achieve a sound fault feature representation under unknown working condition, which is named as ConditionSenseNet (CSN). This CSN architecture provides a way to dynamically express the crucial features hidden in the samples with the influence of working conditions suppressed, especially the variational working factors will be interpolated in this nonlinear fitting model. Additionally, three experimental studies are tested to verify the effectiveness of the proposed DICN method for bearing intelligent diagnosis under variational working conditions. The results and comparisons with other seven deep learning models show the proposed method shows outstanding robustness and higher accuracy where the accuracy of DICN is higher than the one of convolution neural network by more than 9% even if the working condition is variational.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大草莓完成签到,获得积分10
刚刚
1秒前
下载论文真费劲完成签到,获得积分10
2秒前
壮观乐儿发布了新的文献求助10
2秒前
文艺香菱发布了新的文献求助10
3秒前
大模型应助zhouxuefeng采纳,获得10
3秒前
4秒前
周周发布了新的文献求助10
4秒前
kvvcp发布了新的文献求助10
5秒前
lyl完成签到,获得积分10
6秒前
zho关闭了zho文献求助
7秒前
善学以致用应助111采纳,获得10
8秒前
YOP发布了新的文献求助10
8秒前
8秒前
Borwn完成签到,获得积分10
8秒前
9秒前
铃旅驳回了wanci应助
9秒前
1sunpf完成签到,获得积分10
10秒前
spf完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
蓬荜生辉发布了新的文献求助10
11秒前
11秒前
Xiaoxiao应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Orange应助毛毛弟采纳,获得10
11秒前
FCH2023完成签到,获得积分10
11秒前
luxkex完成签到,获得积分10
12秒前
周周完成签到,获得积分10
12秒前
iko完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Differential equations with boundary value problems 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3656153
求助须知:如何正确求助?哪些是违规求助? 3218802
关于积分的说明 9726577
捐赠科研通 2927511
什么是DOI,文献DOI怎么找? 1603228
邀请新用户注册赠送积分活动 756009
科研通“疑难数据库(出版商)”最低求助积分说明 733710