Exploring the performance of multi-channel tetrahedral nucleic acid tweezers platforms for efficient and sensitive biosensing

生物传感器 核酸 互补DNA 镊子 适体 DNA 计算生物学 纳米技术 化学 材料科学 生物 分子生物学 生物化学 基因 物理化学
作者
Jingyang Zhang,Mengmeng Chen,Yuan Peng,Shuang Li,Dianpeng Han,Shuyue Ren,Kang Qin,Sen Li,Tie Han,Yu Wang,Zhixian Gao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:448: 137635-137635 被引量:11
标识
DOI:10.1016/j.cej.2022.137635
摘要

The nucleic tweezers-based detection strategies have shown excellent application prospects in molecular detection and diagnosis thanks to the specific target responsiveness and good biocompatibility. However, the limited detection efficiency and unsatisfactory sensitivity make their applications in complex diagnosis difficult, and few reports focused on it. Here, we explored the molecular dynamics simulations and biosensing performance of the Tetrahedral Nucleic Acid Tweezers, including the Antennae like-Tetrahedron Nucleic Acid Tweezer (ATNAT) and the Covered-Tetrahedron Nucleic Acid Tweezer (CTNAT), revealing the molecular dynamics of ATNAT and CTNAT reporters visually and molecularly. After that, we compared the multi-target detection capabilities of DNA tetrahedral tweezers, and combined the CTNAT reporter with better multi-target detection performance with the aptamer and Exponential amplification reaction (EXPAR), developing an efficient and sensitive EXPAR-cDNA-CTNAT strategy. Then we applied the EXPAR-cDNA-CTNAT strategy to detect testosterone, cortisol, and creatine kinase isoenzymes, realizing sensitive and accurate fatigue diagnosis. Compared with the traditional detection strategies, the EXPAR-cDNA-CTNAT strategy showed improved sensitivity and detection efficiency with excellent specificity, and the limits of detection (LODs) for the multi-target detection were as low as 41, 68, and 8 pM, respectively. The EXPAR-cDNA-CTNAT strategy was reliable for multi-target detection, which had great potential in biological science, food safety, and medical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
倒逆之蝶应助科研通管家采纳,获得10
刚刚
静好发布了新的文献求助10
刚刚
思源应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
倒逆之蝶应助科研通管家采纳,获得10
刚刚
麻婆肉丝发布了新的文献求助10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
Gstar发布了新的文献求助10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
倒逆之蝶应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
czt完成签到,获得积分10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
hulahula发布了新的文献求助10
1秒前
Bennyz完成签到,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
lily发布了新的文献求助10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
实验室应助科研通管家采纳,获得30
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927