Exploring the performance of multi-channel tetrahedral nucleic acid tweezers platforms for efficient and sensitive biosensing

生物传感器 核酸 互补DNA 镊子 适体 DNA 计算生物学 纳米技术 化学 材料科学 生物 分子生物学 生物化学 基因 物理化学
作者
Jingyang Zhang,Mengmeng Chen,Yuan Peng,Shuang Li,Dianpeng Han,Shuyue Ren,Kang Qin,Sen Li,Tie Han,Yu Wang,Zhixian Gao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:448: 137635-137635 被引量:9
标识
DOI:10.1016/j.cej.2022.137635
摘要

The nucleic tweezers-based detection strategies have shown excellent application prospects in molecular detection and diagnosis thanks to the specific target responsiveness and good biocompatibility. However, the limited detection efficiency and unsatisfactory sensitivity make their applications in complex diagnosis difficult, and few reports focused on it. Here, we explored the molecular dynamics simulations and biosensing performance of the Tetrahedral Nucleic Acid Tweezers, including the Antennae like-Tetrahedron Nucleic Acid Tweezer (ATNAT) and the Covered-Tetrahedron Nucleic Acid Tweezer (CTNAT), revealing the molecular dynamics of ATNAT and CTNAT reporters visually and molecularly. After that, we compared the multi-target detection capabilities of DNA tetrahedral tweezers, and combined the CTNAT reporter with better multi-target detection performance with the aptamer and Exponential amplification reaction (EXPAR), developing an efficient and sensitive EXPAR-cDNA-CTNAT strategy. Then we applied the EXPAR-cDNA-CTNAT strategy to detect testosterone, cortisol, and creatine kinase isoenzymes, realizing sensitive and accurate fatigue diagnosis. Compared with the traditional detection strategies, the EXPAR-cDNA-CTNAT strategy showed improved sensitivity and detection efficiency with excellent specificity, and the limits of detection (LODs) for the multi-target detection were as low as 41, 68, and 8 pM, respectively. The EXPAR-cDNA-CTNAT strategy was reliable for multi-target detection, which had great potential in biological science, food safety, and medical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsqqqqq完成签到,获得积分10
2秒前
MADKAI发布了新的文献求助10
2秒前
二二二发布了新的文献求助10
2秒前
完美世界应助nihil采纳,获得10
3秒前
3秒前
cd发布了新的文献求助10
3秒前
过时的丹秋完成签到 ,获得积分10
4秒前
4秒前
成就缘分完成签到,获得积分10
4秒前
勤恳的问儿给勤恳的问儿的求助进行了留言
4秒前
一米阳光完成签到,获得积分10
5秒前
深情安青应助April采纳,获得10
5秒前
5秒前
5秒前
淇淇怪怪完成签到,获得积分10
6秒前
7秒前
小蘑菇应助二二二采纳,获得10
7秒前
7秒前
最牛的菠萝隐士完成签到,获得积分10
7秒前
zhang完成签到 ,获得积分10
8秒前
灵犀完成签到,获得积分10
8秒前
ttssooe发布了新的文献求助10
8秒前
CipherSage应助Ll采纳,获得10
9秒前
9秒前
千里发布了新的文献求助10
9秒前
Mia发布了新的文献求助20
10秒前
女神金发布了新的文献求助60
10秒前
10秒前
puny完成签到,获得积分10
10秒前
10秒前
彭于晏应助zhonghbush采纳,获得10
10秒前
啦啦啦啦啦完成签到,获得积分10
11秒前
hmx完成签到,获得积分10
11秒前
忧郁的人英完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
xhy发布了新的文献求助10
11秒前
晴天霹雳3732完成签到,获得积分0
12秒前
carbonhan完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672