The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study

医学 发育不良 结肠镜检查 炎症性肠病 置信区间 胃肠病学 内科学 彩色内窥镜 诊断准确性 腺瘤 内窥镜检查 疾病 结直肠癌 癌症
作者
Shumpei Yamamoto,Hideaki Kinugasa,Kenta Hamada,Masahiro Tomiya,Takayoshi Tanimoto,Akimitsu Ohto,Akiko Toda,Daisuke Takei,Minoru Matsubara,Sayo Suzuki,Kosuke Inoue,Takehiro Tanaka,Sakiko Hiraoka,Hiroyuki Okada,Yoshiro Kawahara
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (8): 1610-1616 被引量:4
标识
DOI:10.1111/jgh.15904
摘要

Abstract Background and Aim Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low‐grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability. Methods This study used a deep convolutional neural network, the EfficientNet‐B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non‐magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the “adenocarcinoma/high‐grade dysplasia” and “low‐grade dysplasia/sporadic adenoma/normal mucosa” groups. We compared the diagnostic accuracy between AI and endoscopists (three non‐experts and four experts) using 186 test set images. Results The diagnostic ability of the experts/non‐experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5–66.3)/70.5% (95% CI: 63.8–76.6)/72.5% (95% CI: 60.4–82.5), specificity of 88.0% (95% CI: 84.7–90.8)/78.8% (95% CI: 74.3–83.1)/82.9% (95% CI: 74.8–89.2), and accuracy of 77.8% (95% CI: 74.7–80.8)/75.8% (95% CI: 72–79.3)/79.0% (95% CI: 72.5–84.6), respectively. Conclusions The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WW完成签到,获得积分10
刚刚
JoaquinH发布了新的文献求助10
刚刚
顾矜应助liuyunhao7207采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
洪世贤完成签到,获得积分20
刚刚
可爱的函函应助小梨采纳,获得10
刚刚
1秒前
JamesPei应助过时的热狗采纳,获得10
1秒前
窦豆发布了新的文献求助10
1秒前
Ava应助复杂项链采纳,获得10
2秒前
yx_cheng应助ZAL采纳,获得30
2秒前
乐乐应助帅气的小鸭子采纳,获得10
3秒前
范范完成签到,获得积分10
4秒前
伊斯坦布尔的鱼应助樘樘采纳,获得10
4秒前
4秒前
Steven完成签到,获得积分10
4秒前
surprise完成签到,获得积分10
5秒前
5秒前
WW发布了新的文献求助10
5秒前
洪世贤发布了新的文献求助30
6秒前
7秒前
天天快乐应助卷儿采纳,获得10
7秒前
学术虫完成签到,获得积分10
7秒前
小羊咩咩发布了新的文献求助10
7秒前
斑马睡不着完成签到,获得积分10
8秒前
murongbo发布了新的文献求助10
9秒前
9秒前
9秒前
充电宝应助给大佬递茶采纳,获得10
9秒前
10秒前
lxh发布了新的文献求助10
10秒前
10秒前
bkagyin应助Dominic采纳,获得10
11秒前
Billy发布了新的文献求助10
11秒前
11秒前
12秒前
shinble发布了新的文献求助10
12秒前
13秒前
顺利的冰海完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207