The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study

医学 发育不良 结肠镜检查 炎症性肠病 置信区间 胃肠病学 内科学 彩色内窥镜 诊断准确性 腺瘤 内窥镜检查 疾病 结直肠癌 癌症
作者
Shumpei Yamamoto,Hideaki Kinugasa,Kenta Hamada,Masahiro Tomiya,Takayoshi Tanimoto,Akimitsu Ohto,Akiko Toda,Daisuke Takei,Minoru Matsubara,Sayo Suzuki,Kosuke Inoue,Takehiro Tanaka,Sakiko Hiraoka,Hiroyuki Okada,Yoshiro Kawahara
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (8): 1610-1616 被引量:4
标识
DOI:10.1111/jgh.15904
摘要

Abstract Background and Aim Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low‐grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability. Methods This study used a deep convolutional neural network, the EfficientNet‐B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non‐magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the “adenocarcinoma/high‐grade dysplasia” and “low‐grade dysplasia/sporadic adenoma/normal mucosa” groups. We compared the diagnostic accuracy between AI and endoscopists (three non‐experts and four experts) using 186 test set images. Results The diagnostic ability of the experts/non‐experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5–66.3)/70.5% (95% CI: 63.8–76.6)/72.5% (95% CI: 60.4–82.5), specificity of 88.0% (95% CI: 84.7–90.8)/78.8% (95% CI: 74.3–83.1)/82.9% (95% CI: 74.8–89.2), and accuracy of 77.8% (95% CI: 74.7–80.8)/75.8% (95% CI: 72–79.3)/79.0% (95% CI: 72.5–84.6), respectively. Conclusions The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
毛毛完成签到,获得积分10
2秒前
自觉的绮烟完成签到,获得积分10
2秒前
GuMingyang完成签到,获得积分10
2秒前
2秒前
害羞的妙梦完成签到,获得积分10
3秒前
3秒前
难过怀绿完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
可积完成签到,获得积分10
7秒前
ShengjuChen完成签到 ,获得积分10
7秒前
tony发布了新的文献求助10
8秒前
健康的人生完成签到,获得积分10
8秒前
严yee发布了新的文献求助10
8秒前
9秒前
飞飞飞发布了新的文献求助10
9秒前
9秒前
刘科研完成签到,获得积分10
9秒前
kosmos完成签到,获得积分10
10秒前
10秒前
Khaos_0929完成签到,获得积分10
11秒前
12秒前
zhangmeimei完成签到,获得积分10
12秒前
化学镁铝完成签到,获得积分10
13秒前
14秒前
yyyyyy完成签到 ,获得积分10
15秒前
Satan发布了新的文献求助10
15秒前
16秒前
科研通AI6.1应助tony采纳,获得10
16秒前
怜梦完成签到,获得积分10
16秒前
cookie完成签到,获得积分10
17秒前
conveyor6发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
爆米花应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707