已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study

医学 发育不良 结肠镜检查 炎症性肠病 置信区间 胃肠病学 内科学 彩色内窥镜 诊断准确性 腺瘤 内窥镜检查 疾病 结直肠癌 癌症
作者
Shumpei Yamamoto,Hideaki Kinugasa,Kenta Hamada,Masahiro Tomiya,Takayoshi Tanimoto,Akimitsu Ohto,Akiko Toda,Daisuke Takei,Minoru Matsubara,Sayo Suzuki,Kosuke Inoue,Takehiro Tanaka,Sakiko Hiraoka,Hiroyuki Okada,Yoshiro Kawahara
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (8): 1610-1616 被引量:4
标识
DOI:10.1111/jgh.15904
摘要

Abstract Background and Aim Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low‐grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability. Methods This study used a deep convolutional neural network, the EfficientNet‐B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non‐magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the “adenocarcinoma/high‐grade dysplasia” and “low‐grade dysplasia/sporadic adenoma/normal mucosa” groups. We compared the diagnostic accuracy between AI and endoscopists (three non‐experts and four experts) using 186 test set images. Results The diagnostic ability of the experts/non‐experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5–66.3)/70.5% (95% CI: 63.8–76.6)/72.5% (95% CI: 60.4–82.5), specificity of 88.0% (95% CI: 84.7–90.8)/78.8% (95% CI: 74.3–83.1)/82.9% (95% CI: 74.8–89.2), and accuracy of 77.8% (95% CI: 74.7–80.8)/75.8% (95% CI: 72–79.3)/79.0% (95% CI: 72.5–84.6), respectively. Conclusions The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
背后寻云完成签到,获得积分20
3秒前
4秒前
4秒前
星海妖魂发布了新的文献求助10
5秒前
科研通AI6.1应助yaya采纳,获得10
5秒前
6秒前
6秒前
聪聪great完成签到,获得积分20
6秒前
6秒前
Marshall发布了新的文献求助10
8秒前
Glufo发布了新的文献求助10
9秒前
11秒前
Glufo完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
Moonpie应助科研通管家采纳,获得10
14秒前
Moonpie应助科研通管家采纳,获得10
14秒前
Moonpie应助科研通管家采纳,获得10
14秒前
pikachu完成签到,获得积分10
15秒前
充电宝应助小牛马阿欢采纳,获得10
16秒前
稚祎完成签到 ,获得积分10
18秒前
wearelulu完成签到,获得积分10
18秒前
00完成签到,获得积分10
19秒前
20秒前
可可派完成签到,获得积分10
21秒前
SS完成签到,获得积分0
22秒前
huhuiya完成签到 ,获得积分10
23秒前
年少丶完成签到,获得积分10
24秒前
酷波er应助杨秋月采纳,获得10
25秒前
25秒前
27秒前
传奇3应助GC采纳,获得10
27秒前
LX有理想完成签到 ,获得积分10
27秒前
30秒前
123完成签到 ,获得积分10
30秒前
35秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746304
求助须知:如何正确求助?哪些是违规求助? 5432389
关于积分的说明 15355073
捐赠科研通 4886192
什么是DOI,文献DOI怎么找? 2627124
邀请新用户注册赠送积分活动 1575600
关于科研通互助平台的介绍 1532323