The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study

医学 发育不良 结肠镜检查 炎症性肠病 置信区间 胃肠病学 内科学 彩色内窥镜 诊断准确性 腺瘤 内窥镜检查 疾病 结直肠癌 癌症
作者
Shumpei Yamamoto,Hideaki Kinugasa,Kenta Hamada,Masahiro Tomiya,Takayoshi Tanimoto,Akimitsu Ohto,Akiko Toda,Daisuke Takei,Minoru Matsubara,Sayo Suzuki,Kosuke Inoue,Takehiro Tanaka,Sakiko Hiraoka,Hiroyuki Okada,Yoshiro Kawahara
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (8): 1610-1616 被引量:4
标识
DOI:10.1111/jgh.15904
摘要

Abstract Background and Aim Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low‐grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability. Methods This study used a deep convolutional neural network, the EfficientNet‐B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non‐magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the “adenocarcinoma/high‐grade dysplasia” and “low‐grade dysplasia/sporadic adenoma/normal mucosa” groups. We compared the diagnostic accuracy between AI and endoscopists (three non‐experts and four experts) using 186 test set images. Results The diagnostic ability of the experts/non‐experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5–66.3)/70.5% (95% CI: 63.8–76.6)/72.5% (95% CI: 60.4–82.5), specificity of 88.0% (95% CI: 84.7–90.8)/78.8% (95% CI: 74.3–83.1)/82.9% (95% CI: 74.8–89.2), and accuracy of 77.8% (95% CI: 74.7–80.8)/75.8% (95% CI: 72–79.3)/79.0% (95% CI: 72.5–84.6), respectively. Conclusions The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助无心的土豆采纳,获得10
刚刚
乐于助人大好人完成签到 ,获得积分10
刚刚
ZZQ完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Lina HE完成签到 ,获得积分10
4秒前
852应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
进步完成签到,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
iNk应助dh采纳,获得20
5秒前
orixero应助科研通管家采纳,获得30
5秒前
思源应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
Ezio_sunhao完成签到,获得积分10
7秒前
pangao发布了新的文献求助10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048