The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study

医学 发育不良 结肠镜检查 炎症性肠病 置信区间 胃肠病学 内科学 彩色内窥镜 诊断准确性 腺瘤 内窥镜检查 疾病 结直肠癌 癌症
作者
Shumpei Yamamoto,Hideaki Kinugasa,Kenta Hamada,Masahiro Tomiya,Takayoshi Tanimoto,Akimitsu Ohto,Akiko Toda,Daisuke Takei,Minoru Matsubara,Sayo Suzuki,Kosuke Inoue,Takehiro Tanaka,Sakiko Hiraoka,Hiroyuki Okada,Yoshiro Kawahara
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (8): 1610-1616 被引量:4
标识
DOI:10.1111/jgh.15904
摘要

Abstract Background and Aim Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low‐grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability. Methods This study used a deep convolutional neural network, the EfficientNet‐B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non‐magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the “adenocarcinoma/high‐grade dysplasia” and “low‐grade dysplasia/sporadic adenoma/normal mucosa” groups. We compared the diagnostic accuracy between AI and endoscopists (three non‐experts and four experts) using 186 test set images. Results The diagnostic ability of the experts/non‐experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5–66.3)/70.5% (95% CI: 63.8–76.6)/72.5% (95% CI: 60.4–82.5), specificity of 88.0% (95% CI: 84.7–90.8)/78.8% (95% CI: 74.3–83.1)/82.9% (95% CI: 74.8–89.2), and accuracy of 77.8% (95% CI: 74.7–80.8)/75.8% (95% CI: 72–79.3)/79.0% (95% CI: 72.5–84.6), respectively. Conclusions The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Sherry采纳,获得30
刚刚
1秒前
2秒前
小蘑菇应助a7489420采纳,获得10
4秒前
4秒前
Echo1128完成签到 ,获得积分10
4秒前
5秒前
希望天下0贩的0应助张一采纳,获得10
5秒前
英姑应助千江有水采纳,获得10
5秒前
6秒前
7秒前
内向代珊发布了新的文献求助10
8秒前
揍鱼发布了新的文献求助10
9秒前
HUI发布了新的文献求助10
10秒前
Xxxxzzz完成签到,获得积分10
11秒前
13秒前
13秒前
MQY发布了新的文献求助10
14秒前
酒剑仙完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
19秒前
臭臭完成签到,获得积分10
20秒前
穆紫应助smile采纳,获得10
20秒前
直率的凌香完成签到,获得积分10
20秒前
内向代珊完成签到,获得积分20
20秒前
21秒前
a7489420发布了新的文献求助10
22秒前
Yiy关闭了Yiy文献求助
22秒前
zZ发布了新的文献求助10
22秒前
23秒前
咔咔完成签到 ,获得积分10
23秒前
24秒前
彭于晏应助暴躁的信封采纳,获得10
24秒前
害怕的宝川完成签到,获得积分20
24秒前
25秒前
华仔应助HUI采纳,获得10
27秒前
violet_项完成签到,获得积分10
27秒前
852应助辛勤的乌采纳,获得10
27秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3050909
求助须知:如何正确求助?哪些是违规求助? 2708236
关于积分的说明 7412010
捐赠科研通 2352411
什么是DOI,文献DOI怎么找? 1245174
科研通“疑难数据库(出版商)”最低求助积分说明 605463
版权声明 595796