The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study

医学 发育不良 结肠镜检查 炎症性肠病 置信区间 胃肠病学 内科学 彩色内窥镜 诊断准确性 腺瘤 内窥镜检查 疾病 结直肠癌 癌症
作者
Shumpei Yamamoto,Hideaki Kinugasa,Kenta Hamada,Masahiro Tomiya,Takayoshi Tanimoto,Akimitsu Ohto,Akiko Toda,Daisuke Takei,Minoru Matsubara,Sayo Suzuki,Kosuke Inoue,Takehiro Tanaka,Sakiko Hiraoka,Hiroyuki Okada,Yoshiro Kawahara
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (8): 1610-1616 被引量:4
标识
DOI:10.1111/jgh.15904
摘要

Abstract Background and Aim Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low‐grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability. Methods This study used a deep convolutional neural network, the EfficientNet‐B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non‐magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the “adenocarcinoma/high‐grade dysplasia” and “low‐grade dysplasia/sporadic adenoma/normal mucosa” groups. We compared the diagnostic accuracy between AI and endoscopists (three non‐experts and four experts) using 186 test set images. Results The diagnostic ability of the experts/non‐experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5–66.3)/70.5% (95% CI: 63.8–76.6)/72.5% (95% CI: 60.4–82.5), specificity of 88.0% (95% CI: 84.7–90.8)/78.8% (95% CI: 74.3–83.1)/82.9% (95% CI: 74.8–89.2), and accuracy of 77.8% (95% CI: 74.7–80.8)/75.8% (95% CI: 72–79.3)/79.0% (95% CI: 72.5–84.6), respectively. Conclusions The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈陈陈完成签到,获得积分10
1秒前
酷波er应助开心忆秋采纳,获得30
1秒前
1秒前
zqy发布了新的文献求助10
1秒前
Z666666666完成签到 ,获得积分10
1秒前
ddboys1009发布了新的文献求助10
1秒前
qqqq完成签到,获得积分10
2秒前
2秒前
2秒前
LIO发布了新的文献求助10
2秒前
cc完成签到,获得积分0
2秒前
3秒前
有魅力的超短裙完成签到,获得积分10
3秒前
英俊的铭应助顾年采纳,获得10
3秒前
3秒前
科研通AI6应助keke采纳,获得10
3秒前
慕青应助丧彪采纳,获得10
4秒前
香蕉觅云应助山岗落月采纳,获得10
4秒前
JADE完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
FashionBoy应助sansan采纳,获得10
5秒前
紫苏桃子姜完成签到,获得积分10
5秒前
慕雪发布了新的文献求助20
5秒前
啊德哈卡完成签到,获得积分10
6秒前
6秒前
挽风发布了新的文献求助10
6秒前
6秒前
7秒前
顾矜应助从容的悟空采纳,获得10
7秒前
HAMS发布了新的文献求助10
7秒前
oo应助狂野尔烟采纳,获得10
7秒前
niceweiwei完成签到 ,获得积分10
7秒前
脑洞疼应助刻苦的媚颜采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
渔渔完成签到 ,获得积分10
9秒前
烽火残心完成签到,获得积分10
9秒前
9秒前
顾年完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297