Potential mechanisms ofPyrrosiae Foliumin treating prostate cancer based on network pharmacology and molecular docking

UniProt公司 系统药理学 计算生物学 交互网络 小桶 可药性 生物 对接(动物) 药物发现 药物数据库 基因 生物信息学 药品 药理学 遗传学 基因表达 转录组 医学 护理部
作者
Wei Guo,Kun Zhang,Lie Yang
出处
期刊:Drug Development and Industrial Pharmacy [Taylor & Francis]
卷期号:48 (5): 189-197
标识
DOI:10.1080/03639045.2022.2088785
摘要

The network pharmacology approach and molecular docking were employed to explore the mechanism of Pyrrosiae Folium (PF) against prostate cancer (PCa).The active compounds and their corresponding putative targets of PF were identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), the gene names of the targets were obtained from the UniProt database. The collection of genes associated with PCa was obtained from GeneCards and DisGeNET database. We merged the drug targets and disease targets by online software, Draw Venn Diagram. The resulting gene list was imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. The STRING database was utilized for protein-protein interaction (PPI) network construction. The cytoHubba plugin of Cytoscape was used to identify core genes. Further, molecular docking analysis of the hub targets was carried out using AutoDock Vina software (v1.5.6).A total of six active components were screened by PF, with 167 corresponding putative targets, 1395 related targets for PCa, and 113 targets for drugs and diseases. The 'drug-component-disease-target' network was constructed by Cytoscape software and the target genes mainly involved in the complex treating effects associated with response to oxidative stress, cytokine activity, pathways in cancer, PCa pathway, and tumor necrosis factor (TNF) signaling pathway. Core genes in the PPI network were TNF, JUN, IL6, IL1B, CXCL8, RELA, CCL2, TP53, IL10, and FOS. The molecular docking results reveal the better binding affinity of six active components to the core targets.The results of this study indicated that PF may be have a certain anti-PCa effect by regulating related target genes, affecting pathways in cancer, TNF signaling pathway, and hepatitis B signaling pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鳄鱼发布了新的文献求助10
1秒前
锦鲤禾发布了新的文献求助10
1秒前
2秒前
头秃科研人完成签到,获得积分10
2秒前
2秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
科研通AI6应助lzy采纳,获得10
3秒前
小杭76应助失眠螃蟹采纳,获得10
3秒前
4秒前
朱大大666发布了新的文献求助10
4秒前
悦耳可燕完成签到,获得积分10
5秒前
orixero应助例外采纳,获得30
5秒前
科目三应助小月月采纳,获得10
5秒前
5秒前
浮游应助敏感代云采纳,获得10
5秒前
wfwl发布了新的文献求助10
6秒前
尊敬若云发布了新的文献求助10
7秒前
宇文千万发布了新的文献求助10
7秒前
goKR发布了新的文献求助10
7秒前
7秒前
wu发布了新的文献求助10
7秒前
星星炒蛋完成签到,获得积分20
8秒前
JunChou发布了新的文献求助10
8秒前
10秒前
10秒前
深情安青应助季夏采纳,获得10
10秒前
科研通AI5应助程蒽采纳,获得10
11秒前
NJU_Chanwell发布了新的文献求助10
11秒前
慕青应助77采纳,获得10
12秒前
12秒前
干净士晋发布了新的文献求助10
12秒前
小二郎应助呼呼采纳,获得10
13秒前
wfwl完成签到,获得积分10
13秒前
顾矜应助lhz采纳,获得10
14秒前
CodeCraft应助lhz采纳,获得10
14秒前
paz_1010发布了新的文献求助10
15秒前
热心市民王先生完成签到,获得积分10
16秒前
无限雪巧2发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003803
求助须知:如何正确求助?哪些是违规求助? 4248286
关于积分的说明 13236206
捐赠科研通 4047371
什么是DOI,文献DOI怎么找? 2214293
邀请新用户注册赠送积分活动 1224391
关于科研通互助平台的介绍 1144721