Potential mechanisms ofPyrrosiae Foliumin treating prostate cancer based on network pharmacology and molecular docking

UniProt公司 系统药理学 计算生物学 交互网络 小桶 可药性 生物 对接(动物) 药物发现 药物数据库 基因 生物信息学 药品 药理学 遗传学 基因表达 转录组 医学 护理部
作者
Wei Guo,Kun Zhang,Lie Yang
出处
期刊:Drug Development and Industrial Pharmacy [Informa]
卷期号:48 (5): 189-197
标识
DOI:10.1080/03639045.2022.2088785
摘要

The network pharmacology approach and molecular docking were employed to explore the mechanism of Pyrrosiae Folium (PF) against prostate cancer (PCa).The active compounds and their corresponding putative targets of PF were identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), the gene names of the targets were obtained from the UniProt database. The collection of genes associated with PCa was obtained from GeneCards and DisGeNET database. We merged the drug targets and disease targets by online software, Draw Venn Diagram. The resulting gene list was imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. The STRING database was utilized for protein-protein interaction (PPI) network construction. The cytoHubba plugin of Cytoscape was used to identify core genes. Further, molecular docking analysis of the hub targets was carried out using AutoDock Vina software (v1.5.6).A total of six active components were screened by PF, with 167 corresponding putative targets, 1395 related targets for PCa, and 113 targets for drugs and diseases. The 'drug-component-disease-target' network was constructed by Cytoscape software and the target genes mainly involved in the complex treating effects associated with response to oxidative stress, cytokine activity, pathways in cancer, PCa pathway, and tumor necrosis factor (TNF) signaling pathway. Core genes in the PPI network were TNF, JUN, IL6, IL1B, CXCL8, RELA, CCL2, TP53, IL10, and FOS. The molecular docking results reveal the better binding affinity of six active components to the core targets.The results of this study indicated that PF may be have a certain anti-PCa effect by regulating related target genes, affecting pathways in cancer, TNF signaling pathway, and hepatitis B signaling pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
屹舟完成签到,获得积分10
1秒前
zjudxn关注了科研通微信公众号
1秒前
2秒前
2秒前
科研通AI5应助hu970采纳,获得10
2秒前
2秒前
艺玲发布了新的文献求助10
3秒前
咚咚咚完成签到,获得积分10
3秒前
芋圆Z.完成签到,获得积分10
3秒前
atad2发布了新的文献求助10
3秒前
li梨完成签到,获得积分10
3秒前
4秒前
晏小敏完成签到,获得积分10
4秒前
爆米花应助风中寄云采纳,获得10
5秒前
屹舟发布了新的文献求助10
5秒前
Dou完成签到,获得积分10
5秒前
白泯完成签到,获得积分10
6秒前
1ssd发布了新的文献求助10
6秒前
667发布了新的文献求助10
6秒前
小二郎应助辰柒采纳,获得10
7秒前
8秒前
8秒前
clear完成签到,获得积分20
8秒前
8秒前
orixero应助congguitar采纳,获得10
8秒前
Evan完成签到,获得积分10
8秒前
YANG发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
9秒前
sunzhiyu233发布了新的文献求助10
10秒前
Raul完成签到 ,获得积分10
10秒前
10秒前
伯尔尼圆白菜完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
buuyoo完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759