Potential mechanisms ofPyrrosiae Foliumin treating prostate cancer based on network pharmacology and molecular docking

UniProt公司 系统药理学 计算生物学 交互网络 小桶 可药性 生物 对接(动物) 药物发现 药物数据库 基因 生物信息学 药品 药理学 遗传学 基因表达 转录组 医学 护理部
作者
Wei Guo,Kun Zhang,Lie Yang
出处
期刊:Drug Development and Industrial Pharmacy [Taylor & Francis]
卷期号:48 (5): 189-197
标识
DOI:10.1080/03639045.2022.2088785
摘要

The network pharmacology approach and molecular docking were employed to explore the mechanism of Pyrrosiae Folium (PF) against prostate cancer (PCa).The active compounds and their corresponding putative targets of PF were identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), the gene names of the targets were obtained from the UniProt database. The collection of genes associated with PCa was obtained from GeneCards and DisGeNET database. We merged the drug targets and disease targets by online software, Draw Venn Diagram. The resulting gene list was imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. The STRING database was utilized for protein-protein interaction (PPI) network construction. The cytoHubba plugin of Cytoscape was used to identify core genes. Further, molecular docking analysis of the hub targets was carried out using AutoDock Vina software (v1.5.6).A total of six active components were screened by PF, with 167 corresponding putative targets, 1395 related targets for PCa, and 113 targets for drugs and diseases. The 'drug-component-disease-target' network was constructed by Cytoscape software and the target genes mainly involved in the complex treating effects associated with response to oxidative stress, cytokine activity, pathways in cancer, PCa pathway, and tumor necrosis factor (TNF) signaling pathway. Core genes in the PPI network were TNF, JUN, IL6, IL1B, CXCL8, RELA, CCL2, TP53, IL10, and FOS. The molecular docking results reveal the better binding affinity of six active components to the core targets.The results of this study indicated that PF may be have a certain anti-PCa effect by regulating related target genes, affecting pathways in cancer, TNF signaling pathway, and hepatitis B signaling pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柠栀发布了新的文献求助10
刚刚
忘响关注了科研通微信公众号
刚刚
橙子完成签到,获得积分10
1秒前
1秒前
胡振宁完成签到 ,获得积分10
1秒前
隐形曼青应助tang采纳,获得10
2秒前
2秒前
2秒前
2秒前
Orange应助123采纳,获得10
3秒前
4秒前
5秒前
lilili应助晚宁采纳,获得10
5秒前
Ava应助橙子采纳,获得10
5秒前
感性的若冰完成签到 ,获得积分10
5秒前
居家家发布了新的文献求助10
8秒前
CipherSage应助Ahui采纳,获得10
8秒前
床头经济学完成签到,获得积分10
8秒前
蔡博颖发布了新的文献求助10
9秒前
赘婿应助可靠的墨镜采纳,获得10
9秒前
10秒前
11秒前
13秒前
13秒前
顺利的飞荷完成签到,获得积分0
14秒前
CipherSage应助wtt采纳,获得10
14秒前
华仔应助fdu_sf采纳,获得10
14秒前
yy发布了新的文献求助10
15秒前
cuckoo发布了新的文献求助10
16秒前
16秒前
17秒前
科研通AI6应助标致凝莲采纳,获得10
19秒前
19秒前
20秒前
xiaohua完成签到,获得积分10
20秒前
小晓俊发布了新的文献求助10
20秒前
Jack123发布了新的文献求助10
21秒前
21秒前
by关注了科研通微信公众号
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493