Potential mechanisms ofPyrrosiae Foliumin treating prostate cancer based on network pharmacology and molecular docking

UniProt公司 系统药理学 计算生物学 交互网络 小桶 可药性 生物 对接(动物) 药物发现 药物数据库 基因 生物信息学 药品 药理学 遗传学 基因表达 转录组 医学 护理部
作者
Wei Guo,Kun Zhang,Lie Yang
出处
期刊:Drug Development and Industrial Pharmacy [Taylor & Francis]
卷期号:48 (5): 189-197
标识
DOI:10.1080/03639045.2022.2088785
摘要

The network pharmacology approach and molecular docking were employed to explore the mechanism of Pyrrosiae Folium (PF) against prostate cancer (PCa).The active compounds and their corresponding putative targets of PF were identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), the gene names of the targets were obtained from the UniProt database. The collection of genes associated with PCa was obtained from GeneCards and DisGeNET database. We merged the drug targets and disease targets by online software, Draw Venn Diagram. The resulting gene list was imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. The STRING database was utilized for protein-protein interaction (PPI) network construction. The cytoHubba plugin of Cytoscape was used to identify core genes. Further, molecular docking analysis of the hub targets was carried out using AutoDock Vina software (v1.5.6).A total of six active components were screened by PF, with 167 corresponding putative targets, 1395 related targets for PCa, and 113 targets for drugs and diseases. The 'drug-component-disease-target' network was constructed by Cytoscape software and the target genes mainly involved in the complex treating effects associated with response to oxidative stress, cytokine activity, pathways in cancer, PCa pathway, and tumor necrosis factor (TNF) signaling pathway. Core genes in the PPI network were TNF, JUN, IL6, IL1B, CXCL8, RELA, CCL2, TP53, IL10, and FOS. The molecular docking results reveal the better binding affinity of six active components to the core targets.The results of this study indicated that PF may be have a certain anti-PCa effect by regulating related target genes, affecting pathways in cancer, TNF signaling pathway, and hepatitis B signaling pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
松山湖宗师完成签到,获得积分10
刚刚
May完成签到,获得积分10
刚刚
汉堡包应助jhz采纳,获得10
刚刚
2秒前
砡君完成签到,获得积分10
2秒前
情怀应助Xinzz采纳,获得10
2秒前
2秒前
一派倾城完成签到,获得积分10
2秒前
2秒前
飘飘发布了新的文献求助10
2秒前
XX完成签到,获得积分10
2秒前
单纯的爆米花完成签到,获得积分10
2秒前
JamesPei应助典雅的俊驰采纳,获得10
2秒前
3秒前
充电宝应助zz采纳,获得10
3秒前
蕾蕾完成签到,获得积分20
3秒前
3秒前
hbu123完成签到,获得积分10
3秒前
3秒前
光亮的绿凝关注了科研通微信公众号
3秒前
科研通AI6应助咪咪摸摸采纳,获得10
4秒前
4秒前
4秒前
yzbbb发布了新的文献求助10
4秒前
5秒前
君君完成签到,获得积分10
5秒前
Owen应助不安的流沙采纳,获得10
5秒前
安全平静发布了新的文献求助10
6秒前
6秒前
6秒前
zwenng发布了新的文献求助10
6秒前
满满嘟嘟发布了新的文献求助10
7秒前
wacfpp完成签到,获得积分10
7秒前
欣欣子发布了新的文献求助10
7秒前
小小完成签到,获得积分10
7秒前
嘎嘎发布了新的文献求助10
7秒前
君君发布了新的文献求助10
8秒前
8秒前
科研通AI6应助jyyg采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475