亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controllable protein design with language models

计算机科学
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (6): 521-532 被引量:156
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八两发布了新的文献求助10
1秒前
嘻嘻哈哈应助灵巧柚子采纳,获得10
2秒前
kw98完成签到 ,获得积分10
4秒前
5秒前
117发布了新的文献求助10
10秒前
乐乐应助蜘蛛侠采纳,获得10
11秒前
拿拿完成签到 ,获得积分10
12秒前
蓉蓉完成签到 ,获得积分10
17秒前
17秒前
19秒前
20秒前
21秒前
oikage发布了新的文献求助10
22秒前
柔弱河马发布了新的文献求助10
25秒前
蜘蛛侠发布了新的文献求助10
26秒前
zy完成签到,获得积分20
35秒前
复杂的傲柔完成签到 ,获得积分10
36秒前
柔弱河马完成签到,获得积分10
36秒前
浮游应助郑郑采纳,获得10
36秒前
金沐栋完成签到,获得积分10
38秒前
冷静的小虾米完成签到 ,获得积分10
42秒前
在水一方应助金沐栋采纳,获得10
43秒前
48秒前
pluto应助nbing采纳,获得10
51秒前
51秒前
小白发布了新的文献求助20
54秒前
桐桐应助忧伤的摩托采纳,获得10
1分钟前
tuanheqi应助科研通管家采纳,获得100
1分钟前
117发布了新的文献求助30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
sj发布了新的文献求助20
1分钟前
Panther完成签到,获得积分10
1分钟前
1分钟前
bkagyin应助调皮的绿真采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164