Controllable protein design with language models

计算机科学
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (6): 521-532 被引量:167
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等于零完成签到 ,获得积分10
2秒前
Hzml完成签到 ,获得积分10
2秒前
7秒前
伶俐芷珊发布了新的文献求助10
11秒前
wxxsx发布了新的文献求助10
15秒前
净心完成签到 ,获得积分10
18秒前
无情的冰香完成签到 ,获得积分10
20秒前
mp5完成签到,获得积分10
26秒前
初心路完成签到 ,获得积分10
29秒前
huenguyenvan完成签到,获得积分10
30秒前
积极从蕾应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
32秒前
wanci应助科研通管家采纳,获得10
32秒前
32秒前
量子星尘发布了新的文献求助10
39秒前
40秒前
紫焰完成签到 ,获得积分10
40秒前
分手吧亚索完成签到,获得积分10
46秒前
高高完成签到 ,获得积分10
57秒前
Lrcx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
景清完成签到 ,获得积分10
1分钟前
zero发布了新的文献求助10
1分钟前
怡然傲南发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
奇奇怪怪的大鱼完成签到,获得积分10
1分钟前
叮叮当当发布了新的文献求助30
1分钟前
小田完成签到 ,获得积分10
1分钟前
出厂价完成签到,获得积分10
1分钟前
魔幻以菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
LM完成签到,获得积分10
1分钟前
叮叮当当发布了新的文献求助10
1分钟前
阿包完成签到 ,获得积分10
1分钟前
Yi完成签到,获得积分10
1分钟前
小休完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603452
求助须知:如何正确求助?哪些是违规求助? 4688447
关于积分的说明 14853716
捐赠科研通 4692182
什么是DOI,文献DOI怎么找? 2540735
邀请新用户注册赠送积分活动 1507039
关于科研通互助平台的介绍 1471705