Controllable protein design with language models

计算机科学
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (6): 521-532 被引量:134
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助麦田里的稻香采纳,获得10
刚刚
刚刚
Owen应助扶桑采纳,获得10
1秒前
zhou完成签到,获得积分10
1秒前
1秒前
2秒前
大力日记本完成签到,获得积分10
2秒前
2秒前
dy完成签到,获得积分10
2秒前
英姑应助歇菜采纳,获得10
2秒前
01231009yrjz完成签到,获得积分10
2秒前
我是老大应助haha0329采纳,获得10
3秒前
Akim应助等你下课采纳,获得10
4秒前
Bystander完成签到 ,获得积分10
5秒前
zxc发布了新的文献求助10
5秒前
5秒前
丘比特应助小林不熬夜采纳,获得10
5秒前
6秒前
7秒前
7秒前
Ghhhhn完成签到,获得积分20
7秒前
8秒前
CC发布了新的文献求助10
8秒前
小莹完成签到,获得积分10
8秒前
幽默果汁完成签到 ,获得积分10
8秒前
虚拟的秋寒完成签到,获得积分10
8秒前
9秒前
sxy发布了新的文献求助10
10秒前
10秒前
10秒前
科研顺利完成签到,获得积分10
10秒前
Hello应助@Hi采纳,获得10
11秒前
852应助lixiaolu采纳,获得10
11秒前
余空完成签到,获得积分10
11秒前
11秒前
plant发布了新的文献求助10
11秒前
包包琪发布了新的文献求助10
12秒前
Ghhhhn发布了新的文献求助30
12秒前
12秒前
崔凯发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086