Controllable protein design with language models

计算机科学
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (6): 521-532 被引量:156
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助爱吃马铃薯采纳,获得10
1秒前
2秒前
酷波er应助夹心采纳,获得10
2秒前
2秒前
2秒前
Akim应助称心的依琴采纳,获得10
3秒前
3秒前
您疼肚发布了新的文献求助10
3秒前
Jiangtao应助科研狗采纳,获得10
4秒前
4秒前
传奇3应助高须杨采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
开心的自行车完成签到,获得积分10
6秒前
自由思枫发布了新的文献求助10
7秒前
Susie完成签到,获得积分10
7秒前
A29964095发布了新的文献求助10
8秒前
海绵宝宝发布了新的文献求助10
8秒前
8秒前
Yang完成签到,获得积分10
8秒前
Jasper应助pingyuxuan采纳,获得10
9秒前
C1stues完成签到,获得积分10
9秒前
Owen应助橘子采纳,获得10
10秒前
异乡人完成签到,获得积分10
10秒前
10秒前
菜花发布了新的文献求助10
11秒前
栖迟发布了新的文献求助10
11秒前
高须杨完成签到,获得积分10
11秒前
123123发布了新的文献求助10
12秒前
12秒前
QDU完成签到,获得积分10
12秒前
江望雪完成签到,获得积分10
12秒前
chongyue完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
16秒前
茅咖喱完成签到,获得积分20
16秒前
夏浅完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002