亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controllable protein design with language models

计算机科学
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (6): 521-532 被引量:124
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
11秒前
xiangwang发布了新的文献求助10
16秒前
ZHY发布了新的文献求助10
16秒前
28秒前
石人达发布了新的文献求助10
32秒前
Oracle应助科研通管家采纳,获得20
46秒前
852应助天真咖啡豆采纳,获得10
59秒前
ZHY发布了新的文献求助10
1分钟前
徐doc完成签到 ,获得积分10
1分钟前
1分钟前
feng_yihan完成签到 ,获得积分10
1分钟前
XY发布了新的文献求助10
1分钟前
1分钟前
1分钟前
英俊的铭应助懒洋洋采纳,获得10
1分钟前
1分钟前
1分钟前
勤恳冰淇淋完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科目三应助renxiaoting采纳,获得10
1分钟前
JamesPei应助XY采纳,获得10
1分钟前
1分钟前
复杂云朵发布了新的文献求助20
1分钟前
1分钟前
Yuuho完成签到,获得积分10
1分钟前
renxiaoting发布了新的文献求助10
1分钟前
xiangwang发布了新的文献求助30
2分钟前
2分钟前
懒洋洋发布了新的文献求助10
2分钟前
ZHY完成签到,获得积分10
2分钟前
善学以致用应助ZHY采纳,获得10
2分钟前
2分钟前
田様应助renxiaoting采纳,获得10
2分钟前
2分钟前
renxiaoting发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助天真咖啡豆采纳,获得10
3分钟前
情怀应助懒洋洋采纳,获得10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770435
求助须知:如何正确求助?哪些是违规求助? 3315468
关于积分的说明 10176382
捐赠科研通 3030489
什么是DOI,文献DOI怎么找? 1662916
邀请新用户注册赠送积分活动 795232
科研通“疑难数据库(出版商)”最低求助积分说明 756698