清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Controllable protein design with language models

可解释性 计算机科学 人工智能 变压器 生成语法 功能(生物学) 领域(数学) 工程类 生物 数学 电压 进化生物学 纯数学 电气工程
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (6): 521-532 被引量:106
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny发布了新的文献求助10
1秒前
zhangguo完成签到 ,获得积分10
3秒前
28秒前
含糊的茹妖完成签到 ,获得积分10
29秒前
微卫星不稳定完成签到 ,获得积分0
41秒前
Jenny完成签到,获得积分10
46秒前
会飞的鹦鹉完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
2分钟前
彭于晏应助木木三采纳,获得10
2分钟前
小羊咩完成签到 ,获得积分10
2分钟前
席江海完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
3分钟前
3分钟前
木木三发布了新的文献求助10
3分钟前
桐桐应助科研通管家采纳,获得20
3分钟前
英俊的铭应助帮帮我好吗采纳,获得10
3分钟前
wenbo完成签到,获得积分10
3分钟前
3分钟前
qiao发布了新的文献求助10
3分钟前
chenying完成签到 ,获得积分0
4分钟前
大咖完成签到 ,获得积分10
4分钟前
qiao完成签到,获得积分10
4分钟前
fantw完成签到,获得积分10
4分钟前
zhao完成签到,获得积分10
4分钟前
4分钟前
小二郎应助木木三采纳,获得10
4分钟前
4分钟前
Drwenlu发布了新的文献求助10
4分钟前
木木三发布了新的文献求助10
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
木木三完成签到,获得积分20
4分钟前
4分钟前
研友_Z119gZ完成签到 ,获得积分10
4分钟前
theo完成签到 ,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999