已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion

脑电图 模式识别(心理学) 计算机科学 人工智能 自编码 唤醒 大脑活动与冥想 价(化学) 分类器(UML) 特征学习 图形 语音识别 深度学习 特征提取 心理学 神经科学 理论计算机科学 量子力学 物理
作者
Darshana Priyasad,Tharindu Fernando,Simon Denman,Sridha Sridharan,Clinton Fookes
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:250: 109038-109038 被引量:15
标识
DOI:10.1016/j.knosys.2022.109038
摘要

The expression of human emotions is a complex process that often manifests through physiological and psychological traits and results in spatio-temporal brain activity. The brain activity can be captured with an electroencephalogram (EEG) and can be used for emotion recognition. In this paper, we present a novel approach to EEG-based emotion recognition (in terms of arousal, valence, and dominance) using unprocessed EEG signals. Input EEG samples are passed through channel-specific encoders consisting of SincNet based convolution blocks (filters are fine-tuned for the emotion recognition during learning) to learn high-level features related to the objectives. The resultant feature embeddings are then passed through a set of graph convolution networks to model the spatial propagation of brain activity under the assumption that the brain activity captured through an electrode is impacted by the brain activity captured by neighbouring electrodes. The channels are represented as nodes in a graph following the relative positioning of the electrodes during dataset acquisition. Multi-head attention is applied together with the graph convolutions to jointly attend to features from different representation sub-spaces, which leads to improved learning. The resultant features are then passed through a deep neural network-based multi-task classifier to identify the dimensional emotional states (low/high). Our proposed model achieves an accuracy of 88.24%, 88.80% and 88.22% for arousal, valence and dominance respectively using a 10-fold cross-validation; and 63.71%, 64.98% and 61.81% with Leave-One-Subject-Out cross-validation (LOSO) on the Dreamer dataset, and 69.72%, 69.43% and 70.72% for a LOSO evaluation on the DEAP dataset, surpassing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌冬面完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
聪明无颜给聪明无颜的求助进行了留言
2秒前
Jenny发布了新的文献求助80
3秒前
3秒前
昌班发布了新的文献求助10
3秒前
永远热爱物理完成签到 ,获得积分10
4秒前
4秒前
4秒前
6秒前
6秒前
标致秋尽发布了新的文献求助10
7秒前
7秒前
sunly完成签到,获得积分10
8秒前
姜姜发布了新的文献求助50
8秒前
coc发布了新的文献求助10
10秒前
科研通AI6应助mq采纳,获得10
10秒前
现代蛋挞关注了科研通微信公众号
10秒前
魏冉发布了新的文献求助10
12秒前
烟花应助77采纳,获得10
12秒前
13秒前
StayGolDay完成签到,获得积分10
16秒前
科研通AI2S应助彼阳得帕克采纳,获得10
17秒前
一直往前走完成签到,获得积分10
17秒前
精明手机完成签到,获得积分10
17秒前
17秒前
欢檬完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
周周发布了新的文献求助10
19秒前
烙饼完成签到,获得积分10
20秒前
21秒前
nn完成签到,获得积分10
21秒前
慕青应助coc采纳,获得10
22秒前
Lucas应助巧克力布朗尼熊采纳,获得10
23秒前
cc发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017971
求助须知:如何正确求助?哪些是违规求助? 4257418
关于积分的说明 13268953
捐赠科研通 4061860
什么是DOI,文献DOI怎么找? 2221622
邀请新用户注册赠送积分活动 1230822
关于科研通互助平台的介绍 1153478