Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion

脑电图 模式识别(心理学) 计算机科学 人工智能 自编码 唤醒 大脑活动与冥想 价(化学) 分类器(UML) 特征学习 图形 语音识别 深度学习 特征提取 心理学 神经科学 理论计算机科学 量子力学 物理
作者
Darshana Priyasad,Tharindu Fernando,Simon Denman,Sridha Sridharan,Clinton Fookes
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:250: 109038-109038 被引量:15
标识
DOI:10.1016/j.knosys.2022.109038
摘要

The expression of human emotions is a complex process that often manifests through physiological and psychological traits and results in spatio-temporal brain activity. The brain activity can be captured with an electroencephalogram (EEG) and can be used for emotion recognition. In this paper, we present a novel approach to EEG-based emotion recognition (in terms of arousal, valence, and dominance) using unprocessed EEG signals. Input EEG samples are passed through channel-specific encoders consisting of SincNet based convolution blocks (filters are fine-tuned for the emotion recognition during learning) to learn high-level features related to the objectives. The resultant feature embeddings are then passed through a set of graph convolution networks to model the spatial propagation of brain activity under the assumption that the brain activity captured through an electrode is impacted by the brain activity captured by neighbouring electrodes. The channels are represented as nodes in a graph following the relative positioning of the electrodes during dataset acquisition. Multi-head attention is applied together with the graph convolutions to jointly attend to features from different representation sub-spaces, which leads to improved learning. The resultant features are then passed through a deep neural network-based multi-task classifier to identify the dimensional emotional states (low/high). Our proposed model achieves an accuracy of 88.24%, 88.80% and 88.22% for arousal, valence and dominance respectively using a 10-fold cross-validation; and 63.71%, 64.98% and 61.81% with Leave-One-Subject-Out cross-validation (LOSO) on the Dreamer dataset, and 69.72%, 69.43% and 70.72% for a LOSO evaluation on the DEAP dataset, surpassing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静翠柏发布了新的文献求助10
刚刚
yuni完成签到,获得积分10
1秒前
Zeger116完成签到,获得积分10
1秒前
爆米花应助six采纳,获得10
3秒前
lijingwen发布了新的文献求助10
3秒前
Adel发布了新的文献求助10
3秒前
5秒前
大蜥蜴完成签到,获得积分10
5秒前
5秒前
6秒前
Clover04应助爽_采纳,获得10
6秒前
oceanao应助圆圆酱采纳,获得10
7秒前
重要的平灵完成签到 ,获得积分10
7秒前
112233发布了新的文献求助90
7秒前
哈哈恬完成签到,获得积分10
8秒前
善学以致用应助gzsy采纳,获得10
8秒前
Xiaohu完成签到,获得积分10
8秒前
研友_VZG7GZ应助N1koooooo采纳,获得10
9秒前
顺心的惜蕊完成签到 ,获得积分10
9秒前
打打应助Mytheye采纳,获得10
9秒前
duwang完成签到,获得积分10
10秒前
陈陈发布了新的文献求助10
10秒前
Jasper应助加油采纳,获得10
10秒前
活泼雪旋发布了新的文献求助10
11秒前
skyer1完成签到,获得积分10
12秒前
小慈爱鸡完成签到 ,获得积分10
12秒前
12秒前
yhh完成签到,获得积分10
12秒前
赘婿应助tutuutut采纳,获得10
12秒前
西北大灰狼完成签到,获得积分10
12秒前
斯文败类应助孝顺的友菱采纳,获得10
12秒前
13秒前
Zoeytam完成签到,获得积分10
13秒前
青枣不甜完成签到,获得积分10
14秒前
ww完成签到,获得积分10
14秒前
善良的沛山完成签到,获得积分20
14秒前
14秒前
哈哈哈哈完成签到,获得积分10
14秒前
hhh1完成签到,获得积分10
15秒前
aaaa完成签到,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443