Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion

脑电图 模式识别(心理学) 计算机科学 人工智能 自编码 唤醒 大脑活动与冥想 价(化学) 分类器(UML) 特征学习 图形 语音识别 深度学习 特征提取 心理学 神经科学 理论计算机科学 量子力学 物理
作者
Darshana Priyasad,Tharindu Fernando,Simon Denman,Sridha Sridharan,Clinton Fookes
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:250: 109038-109038 被引量:15
标识
DOI:10.1016/j.knosys.2022.109038
摘要

The expression of human emotions is a complex process that often manifests through physiological and psychological traits and results in spatio-temporal brain activity. The brain activity can be captured with an electroencephalogram (EEG) and can be used for emotion recognition. In this paper, we present a novel approach to EEG-based emotion recognition (in terms of arousal, valence, and dominance) using unprocessed EEG signals. Input EEG samples are passed through channel-specific encoders consisting of SincNet based convolution blocks (filters are fine-tuned for the emotion recognition during learning) to learn high-level features related to the objectives. The resultant feature embeddings are then passed through a set of graph convolution networks to model the spatial propagation of brain activity under the assumption that the brain activity captured through an electrode is impacted by the brain activity captured by neighbouring electrodes. The channels are represented as nodes in a graph following the relative positioning of the electrodes during dataset acquisition. Multi-head attention is applied together with the graph convolutions to jointly attend to features from different representation sub-spaces, which leads to improved learning. The resultant features are then passed through a deep neural network-based multi-task classifier to identify the dimensional emotional states (low/high). Our proposed model achieves an accuracy of 88.24%, 88.80% and 88.22% for arousal, valence and dominance respectively using a 10-fold cross-validation; and 63.71%, 64.98% and 61.81% with Leave-One-Subject-Out cross-validation (LOSO) on the Dreamer dataset, and 69.72%, 69.43% and 70.72% for a LOSO evaluation on the DEAP dataset, surpassing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小灵通发布了新的文献求助10
刚刚
刚刚
海藻发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
Lucas应助石幻枫采纳,获得10
1秒前
Nothing发布了新的文献求助10
2秒前
cute666发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
纸质超人发布了新的文献求助10
3秒前
4秒前
4秒前
Lucas应助ln采纳,获得10
5秒前
ZSY完成签到,获得积分10
5秒前
huihui发布了新的文献求助10
5秒前
lin完成签到,获得积分10
5秒前
Hello应助小卢睡的香采纳,获得10
7秒前
情怀应助金荣采纳,获得20
8秒前
万信心发布了新的文献求助10
8秒前
8秒前
星辰大海应助zifeimo采纳,获得10
8秒前
Jasper应助杨一采纳,获得10
10秒前
cl完成签到 ,获得积分10
10秒前
阳光襄发布了新的文献求助10
10秒前
cute666完成签到,获得积分10
10秒前
11秒前
lin发布了新的文献求助10
11秒前
星星虫完成签到,获得积分10
11秒前
思源应助李家龙采纳,获得10
11秒前
12秒前
13秒前
13秒前
13秒前
FKVB_完成签到,获得积分10
13秒前
13秒前
绿灯请通行完成签到,获得积分10
14秒前
WT发布了新的文献求助10
14秒前
黑摄会阿Fay完成签到,获得积分10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646