Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion

脑电图 模式识别(心理学) 计算机科学 人工智能 自编码 唤醒 大脑活动与冥想 价(化学) 分类器(UML) 特征学习 图形 语音识别 深度学习 特征提取 心理学 神经科学 理论计算机科学 量子力学 物理
作者
Darshana Priyasad,Tharindu Fernando,Simon Denman,Sridha Sridharan,Clinton Fookes
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:250: 109038-109038 被引量:15
标识
DOI:10.1016/j.knosys.2022.109038
摘要

The expression of human emotions is a complex process that often manifests through physiological and psychological traits and results in spatio-temporal brain activity. The brain activity can be captured with an electroencephalogram (EEG) and can be used for emotion recognition. In this paper, we present a novel approach to EEG-based emotion recognition (in terms of arousal, valence, and dominance) using unprocessed EEG signals. Input EEG samples are passed through channel-specific encoders consisting of SincNet based convolution blocks (filters are fine-tuned for the emotion recognition during learning) to learn high-level features related to the objectives. The resultant feature embeddings are then passed through a set of graph convolution networks to model the spatial propagation of brain activity under the assumption that the brain activity captured through an electrode is impacted by the brain activity captured by neighbouring electrodes. The channels are represented as nodes in a graph following the relative positioning of the electrodes during dataset acquisition. Multi-head attention is applied together with the graph convolutions to jointly attend to features from different representation sub-spaces, which leads to improved learning. The resultant features are then passed through a deep neural network-based multi-task classifier to identify the dimensional emotional states (low/high). Our proposed model achieves an accuracy of 88.24%, 88.80% and 88.22% for arousal, valence and dominance respectively using a 10-fold cross-validation; and 63.71%, 64.98% and 61.81% with Leave-One-Subject-Out cross-validation (LOSO) on the Dreamer dataset, and 69.72%, 69.43% and 70.72% for a LOSO evaluation on the DEAP dataset, surpassing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cinderella完成签到,获得积分10
1秒前
2秒前
lin发布了新的文献求助10
3秒前
tmpstlml完成签到,获得积分10
3秒前
LUNWENREQUEST完成签到,获得积分20
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得30
4秒前
111发布了新的文献求助10
5秒前
keyanlv完成签到,获得积分10
5秒前
富贵儿发布了新的文献求助10
7秒前
冯度翩翩完成签到,获得积分10
7秒前
sweetbearm应助健壮的涑采纳,获得10
7秒前
村里傻小子完成签到,获得积分20
7秒前
田様应助Khr1stINK采纳,获得10
8秒前
傲娇的凡旋应助小周采纳,获得10
9秒前
潇潇潇完成签到 ,获得积分10
9秒前
10秒前
英俊的铭应助XShu采纳,获得10
11秒前
Hello应助一只大肥猫采纳,获得10
12秒前
allyceacheng完成签到,获得积分10
12秒前
科研通AI5应助phd采纳,获得10
13秒前
13秒前
WTaMi完成签到 ,获得积分10
13秒前
zoe发布了新的文献求助10
13秒前
Owen应助无奈的酒窝采纳,获得10
14秒前
15秒前
17秒前
17秒前
17秒前
科研通AI5应助wangyanwxy采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808