Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion

脑电图 模式识别(心理学) 计算机科学 人工智能 自编码 唤醒 大脑活动与冥想 价(化学) 分类器(UML) 特征学习 图形 语音识别 深度学习 特征提取 心理学 神经科学 理论计算机科学 物理 量子力学
作者
Darshana Priyasad,Tharindu Fernando,Simon Denman,Sridha Sridharan,Clinton Fookes
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:250: 109038-109038 被引量:15
标识
DOI:10.1016/j.knosys.2022.109038
摘要

The expression of human emotions is a complex process that often manifests through physiological and psychological traits and results in spatio-temporal brain activity. The brain activity can be captured with an electroencephalogram (EEG) and can be used for emotion recognition. In this paper, we present a novel approach to EEG-based emotion recognition (in terms of arousal, valence, and dominance) using unprocessed EEG signals. Input EEG samples are passed through channel-specific encoders consisting of SincNet based convolution blocks (filters are fine-tuned for the emotion recognition during learning) to learn high-level features related to the objectives. The resultant feature embeddings are then passed through a set of graph convolution networks to model the spatial propagation of brain activity under the assumption that the brain activity captured through an electrode is impacted by the brain activity captured by neighbouring electrodes. The channels are represented as nodes in a graph following the relative positioning of the electrodes during dataset acquisition. Multi-head attention is applied together with the graph convolutions to jointly attend to features from different representation sub-spaces, which leads to improved learning. The resultant features are then passed through a deep neural network-based multi-task classifier to identify the dimensional emotional states (low/high). Our proposed model achieves an accuracy of 88.24%, 88.80% and 88.22% for arousal, valence and dominance respectively using a 10-fold cross-validation; and 63.71%, 64.98% and 61.81% with Leave-One-Subject-Out cross-validation (LOSO) on the Dreamer dataset, and 69.72%, 69.43% and 70.72% for a LOSO evaluation on the DEAP dataset, surpassing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的飞柏完成签到 ,获得积分10
1秒前
乐观帅哥发布了新的文献求助10
3秒前
4秒前
n11完成签到,获得积分10
4秒前
4秒前
lingzhi完成签到 ,获得积分10
4秒前
4秒前
艾米完成签到,获得积分10
5秒前
不默生完成签到 ,获得积分10
6秒前
yu完成签到 ,获得积分10
6秒前
JIA完成签到 ,获得积分10
6秒前
lucid完成签到,获得积分10
8秒前
疯狂的青枫完成签到,获得积分10
8秒前
8秒前
兆吉完成签到 ,获得积分10
9秒前
羊白玉完成签到 ,获得积分10
9秒前
易琚发布了新的文献求助10
11秒前
12秒前
12秒前
聪慧的正豪应助浮浮世世采纳,获得10
12秒前
yy完成签到 ,获得积分10
13秒前
13秒前
fann完成签到,获得积分10
13秒前
十八发布了新的文献求助10
16秒前
16秒前
逢考必过完成签到 ,获得积分10
17秒前
科研通AI6应助优美的迎松采纳,获得30
18秒前
钟慧完成签到,获得积分10
18秒前
笛卡尔发布了新的文献求助10
19秒前
英姑应助11111111采纳,获得10
19秒前
浮游应助亚李采纳,获得10
20秒前
20秒前
乐观帅哥完成签到,获得积分10
21秒前
22秒前
酷波er应助十八采纳,获得10
22秒前
辣条治便秘完成签到,获得积分20
22秒前
喝一碗粥完成签到,获得积分10
22秒前
JXL发布了新的文献求助10
23秒前
23秒前
Zhang完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221