材料科学
纳米棒
光致发光
X射线光电子能谱
吸收(声学)
半导体
带隙
氧气
可见光谱
多孔性
热液循环
纳米技术
光电子学
化学工程
化学
复合材料
有机化学
工程类
作者
Bo Zhang,Jing Wang,Qufu Wei,Pingping Yu,Shuai Zhang,Yin Xu,Yue Dong,Yi Ni,Jinping Ao,Yi Xia
出处
期刊:ACS Omega
日期:2022-06-21
卷期号:7 (26): 22861-22871
被引量:1
标识
DOI:10.1021/acsomega.2c02613
摘要
Oxygen vacancy (VO) is a kind of primary point defect that extensively exists in semiconductor metal oxides (SMOs). Owing to some of its inherent qualities, an artificial manipulation of VO content in one material has evolved into a hot research field, which is deemed to be capable of modulating band structures and surface characteristics of SMOs. Specific to the gas-sensing area, VO engineering of sensing materials has become an effective means in enhancing sensor response and inducing light-enhanced sensing. In this work, a high-efficiency microwave hydrothermal treatment was utilized to prepare a VO-rich ZnO sample without additional reagents. The X-ray photoelectron spectroscopy test revealed a significant increase in VO proportion, which was from 9.21% in commercial ZnO to 36.27% in synthesized VO-rich ZnO possessing three-dimensional and air-permeable microstructures. The subsequent UV–vis–NIR absorption and photoluminescence spectroscopy indicated an extension absorption in the visible region and band gap reduction of VO-rich ZnO. It turned out that the VO-rich ZnO-based sensor exhibited a considerable response of 63% toward 1 ppm HCHO at room temperature (RT, 25 °C) under visible light irradiation. Particularly, the response/recovery time was only 32/20 s for 1 ppm HCHO and further shortened to 10/5 s for 10 ppm HCHO, which was an excellent performance and comparable to most sensors working at high temperatures. The results in this work strongly suggested the availability of VO engineering and also provided a meaningful candidate for researchers to develop high-performance RT sensors detecting volatile organic compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI