Retrieval Augmented Convolutional Encoder-decoder Networks for Video Captioning

隐藏字幕 计算机科学 判决 编码器 语音识别 卷积神经网络 自然语言处理 人工智能 解码方法 编码 图像(数学) 算法 生物化学 基因 操作系统 化学
作者
Jingwen Chen,Yingwei Pan,Yehao Li,Ting Yao,Hongyang Chao,Tao Mei
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1s): 1-24 被引量:12
标识
DOI:10.1145/3539225
摘要

Video captioning has been an emerging research topic in computer vision, which aims to generate a natural sentence to correctly reflect the visual content of a video. The well-established way of doing so is to rely on encoder-decoder paradigm by learning to encode the input video and decode the variable-length output sentence in a sequence-to-sequence manner. Nevertheless, these approaches often fail to produce complex and descriptive sentences as natural as those from human being, since the models are incapable of memorizing all visual contents and syntactic structures in the human-annotated video-sentence pairs. In this article, we uniquely introduce a Retrieval Augmentation Mechanism (RAM) that enables the explicit reference to existing video-sentence pairs within any encoder-decoder captioning model. Specifically, for each query video, a video-sentence retrieval model is first utilized to fetch semantically relevant sentences from the training sentence pool, coupled with the corresponding training videos. RAM then writes the relevant video-sentence pairs into memory and reads the memorized visual contents/syntactic structures in video-sentence pairs from memory to facilitate the word prediction at each timestep. Furthermore, we present Retrieval Augmented Convolutional Encoder-Decoder Network (R-ConvED), which novelly integrates RAM into convolutional encoder-decoder structure to boost video captioning. Extensive experiments on MSVD, MSR-VTT, Activity Net Captions, and VATEX datasets validate the superiority of our proposals and demonstrate quantitatively compelling results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云峰发布了新的文献求助10
1秒前
不安白秋完成签到 ,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
小马甲应助li采纳,获得10
2秒前
丘比特应助wudi17采纳,获得10
2秒前
Owen应助11采纳,获得10
2秒前
Hello应助siina采纳,获得10
3秒前
leo7发布了新的文献求助10
3秒前
3秒前
3秒前
JamesPei应助wkkky采纳,获得10
4秒前
lfl关闭了lfl文献求助
4秒前
5秒前
5秒前
思源应助自觉冷松采纳,获得10
5秒前
重要亦竹完成签到 ,获得积分10
5秒前
秋暝寒衣完成签到,获得积分10
5秒前
赘婿应助冷艳的海豚采纳,获得10
6秒前
6秒前
6秒前
元谷雪发布了新的文献求助10
7秒前
啸西风完成签到,获得积分10
7秒前
7秒前
风2发布了新的文献求助10
8秒前
egg完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
平常谱完成签到,获得积分0
10秒前
10秒前
10秒前
在水一方应助耍酷夏彤采纳,获得30
10秒前
冉纯菲发布了新的文献求助10
10秒前
上官若男应助Dan_Galaxy采纳,获得20
11秒前
11秒前
plumcute完成签到,获得积分10
11秒前
bingsci驳回了iNk应助
11秒前
liuxu完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002