Retrieval Augmented Convolutional Encoder-decoder Networks for Video Captioning

隐藏字幕 计算机科学 判决 编码器 语音识别 卷积神经网络 自然语言处理 人工智能 解码方法 编码 图像(数学) 算法 生物化学 基因 操作系统 化学
作者
Jingwen Chen,Yingwei Pan,Yehao Li,Ting Yao,Hongyang Chao,Tao Mei
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1s): 1-24 被引量:12
标识
DOI:10.1145/3539225
摘要

Video captioning has been an emerging research topic in computer vision, which aims to generate a natural sentence to correctly reflect the visual content of a video. The well-established way of doing so is to rely on encoder-decoder paradigm by learning to encode the input video and decode the variable-length output sentence in a sequence-to-sequence manner. Nevertheless, these approaches often fail to produce complex and descriptive sentences as natural as those from human being, since the models are incapable of memorizing all visual contents and syntactic structures in the human-annotated video-sentence pairs. In this article, we uniquely introduce a Retrieval Augmentation Mechanism (RAM) that enables the explicit reference to existing video-sentence pairs within any encoder-decoder captioning model. Specifically, for each query video, a video-sentence retrieval model is first utilized to fetch semantically relevant sentences from the training sentence pool, coupled with the corresponding training videos. RAM then writes the relevant video-sentence pairs into memory and reads the memorized visual contents/syntactic structures in video-sentence pairs from memory to facilitate the word prediction at each timestep. Furthermore, we present Retrieval Augmented Convolutional Encoder-Decoder Network (R-ConvED), which novelly integrates RAM into convolutional encoder-decoder structure to boost video captioning. Extensive experiments on MSVD, MSR-VTT, Activity Net Captions, and VATEX datasets validate the superiority of our proposals and demonstrate quantitatively compelling results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助动听的康乃馨采纳,获得10
刚刚
zjq完成签到,获得积分10
1秒前
Evilw1an完成签到 ,获得积分10
1秒前
极电完成签到,获得积分10
1秒前
dora完成签到,获得积分10
1秒前
大个应助ssxxx采纳,获得10
2秒前
2秒前
3秒前
无极微光应助小菜采纳,获得20
3秒前
天地不语发布了新的文献求助10
3秒前
hxhexingdoc完成签到,获得积分10
3秒前
Owen应助ZDM6094采纳,获得10
4秒前
和谐半仙完成签到,获得积分20
4秒前
Gloven完成签到,获得积分20
4秒前
我是老大应助老刀采纳,获得10
4秒前
cai完成签到 ,获得积分10
4秒前
天天快乐应助斑马不一般采纳,获得10
5秒前
5秒前
5秒前
5秒前
keyan完成签到,获得积分10
6秒前
芦同学完成签到,获得积分10
7秒前
7秒前
7秒前
大模型应助姜友舜采纳,获得10
7秒前
开朗艳一发布了新的文献求助10
8秒前
8秒前
9秒前
在水一方应助Cassiopiea19采纳,获得10
9秒前
动听的康乃馨完成签到,获得积分20
9秒前
Lau发布了新的文献求助10
10秒前
10秒前
10秒前
lxcy0612完成签到,获得积分10
10秒前
不争馒头争口气完成签到,获得积分10
11秒前
zhzhzh完成签到,获得积分10
12秒前
瓜老师完成签到,获得积分20
12秒前
12秒前
风中冰香应助科研通管家采纳,获得10
12秒前
嘿嘿应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716