Physical Adversarial Attack Scheme on Object Detectors using 3D Adversarial Object

对抗制 计算机科学 对象(语法) 人工智能 利用 观点 方案(数学) 目标检测 计算机视觉 约束(计算机辅助设计) 模式识别(心理学) 计算机安全 工程类 数学 视觉艺术 艺术 数学分析 机械工程
作者
Abeer Toheed,Muhammad Haroon Yousaf,Rabnawaz,Ali Javed
标识
DOI:10.1109/icodt255437.2022.9787422
摘要

Adversarial attacks are being frequently used these days to exploit different machine learning models including the deep neural networks (DNN) either during the training or testing stage. DNN under such attacks make the false predictions. Digital adversarial attacks are not applicable in physical world. Adversarial attack on object detection is more difficult as compared to the adversarial attack on image classification. This paper presents a physical adversarial attack on object detection using 3D adversarial objects. The proposed methodology overcome the constraint of 2D adversarial patches as they only work for certain viewpoints only. We have mapped an adversarial texture onto a mesh to create the 3D adversarial object. These objects are of various shapes and sizes. Unlike adversarial patch attacks, these adversarial objects are movable from one place to another. Moreover, application of 2D patch is limited to confined viewpoints. Experimentation results show that our 3D adversarial objects are free from such constraints and perform a successful attack on object detection. We used the ShapeNet dataset for different vehicle models. 3D objects are created using Blender 2.93 [1]. Different HDR images are incorporated to create the virtual physical environment. Moreover, we targeted the FasterRCNN and YOLO pre-trained models on the COCO dataset as our target DNN. Experimental results demonstrate that our proposed model successfully fooled these object detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
Hello应助梓树采纳,获得10
5秒前
nml发布了新的文献求助10
5秒前
7秒前
名称完成签到,获得积分10
7秒前
tomorrow发布了新的文献求助30
7秒前
ED应助慵懒的树采纳,获得10
8秒前
flow完成签到 ,获得积分10
9秒前
tqmx完成签到,获得积分10
10秒前
苯环完成签到,获得积分10
11秒前
桐桐应助provin采纳,获得10
12秒前
无花果应助疯癫科研人采纳,获得10
13秒前
花花发布了新的文献求助10
13秒前
LJX完成签到,获得积分10
14秒前
一天一篇sci完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
19秒前
喝一口奶茶完成签到,获得积分10
19秒前
20秒前
21秒前
23秒前
在水一方应助甜甜采纳,获得10
23秒前
ruochenzu发布了新的文献求助10
23秒前
伍寒烟发布了新的文献求助10
26秒前
TBI完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
28秒前
28秒前
Jasper应助雪顶蛋糕采纳,获得10
29秒前
29秒前
所所应助小宋采纳,获得10
29秒前
Attendre完成签到 ,获得积分10
30秒前
30秒前
含糊的文涛完成签到,获得积分10
30秒前
31秒前
32秒前
111完成签到 ,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309