已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge matters: Chest radiology report generation with general and specific knowledge

计算机科学 领域知识 工作量 隐藏字幕 领域(数学分析) 人工智能 图像(数学) 数学分析 数学 操作系统
作者
Shuxin Yang,Xian Wang,Shen Ge,S. Kevin Zhou,Li Xiao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102510-102510 被引量:37
标识
DOI:10.1016/j.media.2022.102510
摘要

Automatic chest radiology report generation is critical in clinics which can relieve experienced radiologists from the heavy workload and remind inexperienced radiologists of misdiagnosis or missed diagnose. Existing approaches mainly formulate chest radiology report generation as an image captioning task and adopt the encoder-decoder framework. However, in the medical domain, such pure data-driven approaches suffer from the following problems: 1) visual and textual bias problem; 2) lack of expert knowledge. In this paper, we propose a knowledge-enhanced radiology report generation approach introduces two types of medical knowledge: 1) General knowledge, which is input independent and provides the broad knowledge for report generation; 2) Specific knowledge, which is input dependent and provides the fine-grained knowledge for chest X-ray report generation. To fully utilize both the general and specific knowledge, we also propose a knowledge-enhanced multi-head attention mechanism. By merging the visual features of the radiology image with general knowledge and specific knowledge, the proposed model can improve the quality of generated reports. The experimental results on the publicly available IU-Xray dataset show that the proposed knowledge-enhanced approach outperforms state-of-the-art methods in almost all metrics. And the results of MIMIC-CXR dataset show that the proposed knowledge-enhanced approach is on par with state-of-the-art methods. Ablation studies also demonstrate that both general and specific knowledge can help to improve the performance of chest radiology report generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的尔岚完成签到,获得积分10
1秒前
1秒前
清爽的诗云完成签到 ,获得积分10
1秒前
summer应助冷暖采纳,获得30
2秒前
情怀应助wualexandra采纳,获得200
2秒前
CRYLK完成签到 ,获得积分10
2秒前
忧郁的丝完成签到,获得积分10
3秒前
4秒前
超人完成签到 ,获得积分10
4秒前
DiJia完成签到 ,获得积分10
4秒前
兰月满楼完成签到 ,获得积分10
5秒前
5秒前
6秒前
orange完成签到,获得积分10
8秒前
8秒前
风衣拖地完成签到 ,获得积分10
8秒前
BELIEVE发布了新的文献求助10
9秒前
9秒前
10秒前
满眼星辰完成签到 ,获得积分10
10秒前
zgd完成签到 ,获得积分10
10秒前
人间天堂发布了新的文献求助20
11秒前
爆米花应助赵小蓉采纳,获得10
11秒前
溧子呀发布了新的文献求助10
11秒前
辛谷方松永旭完成签到 ,获得积分10
12秒前
好好学习完成签到,获得积分10
12秒前
hyw完成签到 ,获得积分10
12秒前
Guan完成签到,获得积分20
13秒前
文静灵阳完成签到 ,获得积分10
13秒前
13秒前
13秒前
NicoLi应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
老师心腹大患完成签到,获得积分10
14秒前
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
14秒前
mrjohn完成签到,获得积分10
15秒前
wren完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566470
求助须知:如何正确求助?哪些是违规求助? 3139182
关于积分的说明 9430889
捐赠科研通 2840029
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717778