A data-driven predictive maintenance framework for injection molding process

预测性维护 云计算 过程(计算) 停工期 造型(装饰) 计算机科学 GSM演进的增强数据速率 工业4.0 工艺工程 生产(经济) 制造工程 可靠性工程 机械工程 工程类 嵌入式系统 人工智能 宏观经济学 经济 操作系统
作者
Saeed Farahani,Vinayak Khade,Shouvik Basu,Srikanth Pilla
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:80: 887-897 被引量:36
标识
DOI:10.1016/j.jmapro.2022.06.013
摘要

Injection molding is the most common process to produce a wide range of complex plastic parts for many different applications, and a large number of machines and devices used in the plastics industry are associated with this process. Maintenance instructions and procedures used in the majority of injection molding plants currently are based on reactive and/or preventive strategies such as replacing failed components and/or performing regularly scheduled maintenance. However, such strategies are not cost-efficient and only partially effective in preventing machine downtime or producing scraps. The emergence of Industry 4.0 related technologies, such as cyber-physical systems, Internet of Things (IoT), cloud and edge computing, new sensors, and vision-based systems, brings new opportunities for the plastics industry to enhance their production and enterprise systems. Developing data-driven, predictive maintenance systems is one such opportunity that can help injection molding companies significantly reduce their maintenance cost while increasing their product quality and production efficiency. Accordingly, in this work, we introduce a generalized framework for implementation of predictive maintenance in injection molding process by integrating a variety of different data sources available in this process and taking the advantage of both cloud and edge computing. To demonstrate this framework, a case study on monitoring of the cooling system in injection molding process is presented. The results show the effectiveness of this approach in detecting cooling issues by monitoring other process data that are not directly correlated to the mold temperature. The comparison of the predicted mold temperature with the respective sensor value demonstrates an average error of 3.29 %, which can gradually be improved by accumulating more training data in the cloud-based system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yfh完成签到,获得积分10
1秒前
zho发布了新的文献求助30
2秒前
bkagyin应助shilong.yang采纳,获得10
2秒前
桐桐应助shilong.yang采纳,获得10
2秒前
可爱的函函应助shilong.yang采纳,获得10
2秒前
CodeCraft应助shilong.yang采纳,获得10
2秒前
研友_VZG7GZ应助shilong.yang采纳,获得20
2秒前
传奇3应助shilong.yang采纳,获得10
2秒前
wanci应助shilong.yang采纳,获得10
2秒前
明理元菱完成签到,获得积分10
2秒前
专注的曼凡给专注的曼凡的求助进行了留言
3秒前
5秒前
yaeshin发布了新的文献求助10
5秒前
研友_VZG7GZ应助6666采纳,获得10
5秒前
Echo完成签到,获得积分20
6秒前
wanci应助MX001采纳,获得10
6秒前
pppp完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
holen发布了新的文献求助10
8秒前
FashionBoy应助wanghao采纳,获得10
8秒前
8秒前
王路飞完成签到,获得积分10
9秒前
roachy应助zd采纳,获得50
9秒前
9秒前
roy_chiang完成签到,获得积分0
9秒前
10秒前
维妮妮完成签到 ,获得积分10
10秒前
10秒前
达西西发布了新的文献求助10
11秒前
as完成签到,获得积分20
12秒前
ding应助诸葛烤鸭采纳,获得10
13秒前
GG小丁同学完成签到,获得积分10
13秒前
文龙发布了新的文献求助10
14秒前
qqs发布了新的文献求助10
15秒前
16秒前
17秒前
猪猪hero应助安静的凌萱采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215