The Feature Extraction of Impact Response and Load Reconstruction Based on Impulse Response Theory

脉冲响应 振幅 脉冲(物理) 控制理论(社会学) 非周期图 振荡(细胞信号) 数学 人工神经网络 计算机科学 数学分析 物理 人工智能 生物 组合数学 量子力学 控制(管理) 遗传学
作者
Dawei Huang,Yadong Gao,Xinyu Yu,Likun Chen
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:10 (7): 524-524 被引量:3
标识
DOI:10.3390/machines10070524
摘要

Impact load is a kind of aperiodic excitation with a short action time and large amplitude, it had more significant effect on the structure than static load. The reconstruction (or identification namely) of impact load is of great importance for validating the structural strength. The aim of this article was to reconstruct the impact load accurately. An impact load identification method based on impulse response theory (IRT) and BP (Back Propagation) neural network is proposed. The excitation and response signals were transformed to the same length by extracting the peak value (amplitude of sine wave) in the rising oscillation period of the response. First, we deduced that there was an approximate linear relationship between the discrete-time integral of impact load and the amplitude of the oscillation period of the response. Secondly, a BP neural network was used to establish a linear relationship between the discrete-time integral of the impact load and the peak value in the rising oscillation period of the response. Thirdly, the network was trained and verified. The error between the actual maximum amplitude of impact load and the identification value was 2.22%. The error between the actual equivalent impulse and the identification value was 0.67%. The results showed that this method had high accuracy and application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖肖完成签到,获得积分10
刚刚
张奎完成签到,获得积分10
刚刚
1秒前
2秒前
婷婷完成签到,获得积分10
2秒前
YXHTCM完成签到,获得积分10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
Ancy应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Dean应助科研通管家采纳,获得150
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
久伴久爱完成签到 ,获得积分10
4秒前
4秒前
浮游应助baill采纳,获得10
4秒前
是小雨呀完成签到,获得积分10
5秒前
6秒前
王士豪发布了新的文献求助50
8秒前
wanci应助微微采纳,获得50
8秒前
Ww完成签到,获得积分10
8秒前
寻359发布了新的文献求助10
8秒前
9秒前
知名不具完成签到 ,获得积分10
9秒前
眼睛大的松鼠完成签到 ,获得积分10
10秒前
11秒前
苹果花发布了新的文献求助20
12秒前
syl完成签到,获得积分10
13秒前
顺心的尔安完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125