重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The Feature Extraction of Impact Response and Load Reconstruction Based on Impulse Response Theory

脉冲响应 振幅 脉冲(物理) 控制理论(社会学) 非周期图 振荡(细胞信号) 数学 人工神经网络 计算机科学 数学分析 物理 人工智能 生物 组合数学 量子力学 控制(管理) 遗传学
作者
Dawei Huang,Yadong Gao,Xinyu Yu,Likun Chen
出处
期刊:Machines [MDPI AG]
卷期号:10 (7): 524-524 被引量:3
标识
DOI:10.3390/machines10070524
摘要

Impact load is a kind of aperiodic excitation with a short action time and large amplitude, it had more significant effect on the structure than static load. The reconstruction (or identification namely) of impact load is of great importance for validating the structural strength. The aim of this article was to reconstruct the impact load accurately. An impact load identification method based on impulse response theory (IRT) and BP (Back Propagation) neural network is proposed. The excitation and response signals were transformed to the same length by extracting the peak value (amplitude of sine wave) in the rising oscillation period of the response. First, we deduced that there was an approximate linear relationship between the discrete-time integral of impact load and the amplitude of the oscillation period of the response. Secondly, a BP neural network was used to establish a linear relationship between the discrete-time integral of the impact load and the peak value in the rising oscillation period of the response. Thirdly, the network was trained and verified. The error between the actual maximum amplitude of impact load and the identification value was 2.22%. The error between the actual equivalent impulse and the identification value was 0.67%. The results showed that this method had high accuracy and application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助Wangle采纳,获得30
刚刚
无名之辈发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
hhhhhh发布了新的文献求助30
1秒前
2秒前
顾矜应助wzc采纳,获得10
2秒前
小二郎应助zhuchenglu采纳,获得10
3秒前
wy.he举报lulu求助涉嫌违规
3秒前
可爱小菜完成签到,获得积分10
3秒前
3秒前
5秒前
xinzhongchen1发布了新的文献求助10
5秒前
6秒前
李小羊完成签到,获得积分10
6秒前
starrism完成签到,获得积分10
6秒前
zhengyf发布了新的文献求助10
6秒前
迅速如柏发布了新的文献求助10
6秒前
6秒前
木木彡完成签到,获得积分10
6秒前
JamesPei应助大意的觅云采纳,获得10
7秒前
iNk应助Li656943234采纳,获得20
7秒前
正好完成签到,获得积分10
7秒前
周六完成签到,获得积分20
7秒前
7秒前
omg关注了科研通微信公众号
7秒前
朱子煊发布了新的文献求助10
7秒前
leo9587发布了新的文献求助10
7秒前
嘿嘿发布了新的文献求助10
8秒前
江姜发布了新的文献求助10
8秒前
8秒前
冷酷浩然完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
拂袖完成签到,获得积分20
10秒前
10秒前
义气的巨人完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605